Skip to main content
Log in

Mechanical Behavior of Methane–Hydrate–Bearing Sand with Nonlinear Constitutive Model

  • Research Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Interests appear in investigating methane-hydrate-bearing sands (MHBS) to address engineering problems, such as foundation instability of man-made permafrost facilities, wellbore instability and sanding during production. Mechanical behavior of MHBS is critical issue to analyze geomechanical hazards. In this paper, MHBS is synthesized in laboratory and triaxial compressive tests are carried out to capture mechanical response. A discrete element method (DEM) model is developed to examine mechanical responses of MHBS by considering real MHBS-based microstructure and particles contact. To describe nonlinear mechanical behavior, Duncan–Chang model is embedded into DEM model and verified with experimental results. Triaxial drained and undrained numerical tests are carried out to investigate effects of hydrate saturation, confining stress, heterogeneity and grading properties on mechanical behavior of pore-filling hydrate sediment. Experimental and numerical results indicate that (1) triaxial compression strength increases with confining stress and hydrate saturation; (2) stress–strain curve becomes smooth at a higher hydrate saturation thanks to the stability enhancement of MHBS structure; (3) heterogeneous distribution of hydrates leads to local instability with non-bonded hydrate particles; (4) grading properties (uniformity coefficient and mean particle diameter) non-apparent influence on compressive strength and dilatancy due to particles re-distribution; and (5) MHBS presents mechanical behavior of brittleness or plasticity in undrained tests rather than strain softening in drained tests. Except for Duncan–Chang model parameters fitting in this work, more experimental and numerical researches are expected to improve the performance in predicting post-failure behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39

Similar content being viewed by others

Abbreviations

λ :

Reaction coefficient

m w :

Mass of water required to prepare MHBS of saturation, kg

S h :

Hydrate saturation

ρ :

Density of methane hydrate

σ 3 :

Confining stress, MPa

σ 1 :

Axial stress, MPa

σ 1 − σ 3 :

Deviatoric stress, MPa

ε :

Axial strain

a, b :

Fitted parameters

E i :

Initial secant elastic modulus, GPa

σ p :

Peak strength, MPa

R f :

Damage ratio

C :

Cohesion, MPa

φ :

Internal friction angle, °

Un :

Displacement between two particles, MPa

Fn :

Normal force between two particles, MPa

Fs :

Shear force between two particles, MPa

Fs max :

Maximum shear force between two particles, MPa

Ks (k s):

Contact shear stiffness, MPa

E c :

Apparent modulus, MPa

k n :

Contact normal stiffness, MPa

R :

Particle radius, mm

d :

Density of particle, kg/m3

f :

Friction

e :

Void ratio

V V :

Void volume, mm3

V s :

Sand volume, mm3

V h :

Volume of gas hydrate, mm3

V tot :

Volume of total model, mm3

V s :

Volume of sand, mm3

E 50 :

Secant elastic modulus, MPa

ε a 50 :

Axial strain at which deviatoric stress reaches half value of peak strength

v 50 :

Secant Poisson’s ratio

ε r 50 :

Radial strain at which deviatoric stress reaches half value of peak strength

D 60 :

Diameter at which 60% of sample's mass is comprised of particles with a diameter less than this value, mm

D 30 :

Diameter at which 30% of the sample's mass is comprised of particles with a diameter less than this value, also known as effective particle size, mm

D 10 :

Diameter at which 10% of the sample's mass is comprised of particles with a diameter less than this value, also known as effective particle size, mm

C u :

Uniformity of soil sample

C c :

Overall smoothness of grading curve

q′, p′ :

Effective stress paths under different hydrate saturations

σ 1 :

Effective axial stress, MPa

σ 3 :

Effective confining stress, MPa

References

  1. Yamamoto, K.: Methane hydrate bearing sediments: a new subject of geomechanics. In: The 12th international conference of international association for computer methods and advances in geomechanics. Goa, India. October 1–6. (2008).

  2. Soga, K.; Lee, S.L.; Ng, M.Y.A.; Klar, A.: Characterisation and engineering properties of Methane hydrate soils. In: Proceedings of the 2nd international workshop on characterisation and engineering properties of natural soils. Singapore. November. (2006).

  3. Kvenvolden, K.: A primer on the geological occurrence of gas hydrate. Geol. Soc. Lond. 137, 9–30 (1998)

    Article  Google Scholar 

  4. Wang, F.; Zhao, B.; Li, G.: Prevention of potential hazards associated with marine gas hydrate exploitation: a review. Energies 11(9), 2384 (2018)

    Article  Google Scholar 

  5. Masui, A.; Haneda, H.; Ogata, Y.; Aoki, K.: Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments. In: Presented at the international offshore and polar engineering conference. Seoul, Korea. June 19–24, (2005).

  6. Miyazaki, K.; Masui, A.; Aoki, K.; Sakamoto, Y.; Tsutomu, Y.; Okubo, S.: Strain-rate dependence of triaxial compressive strength of artificial methane-hydrate-bearing sediment. Int. J. Offshore Polar Eng. 20(04), 256–264 (2010)

    Google Scholar 

  7. Miyazaki, K.; Aoki, K.; Tenma, N.; Sakamoto, Y.; Tsutomu, Y.: Application of nonlinear elastic constitutive model to analysis of artificial methane-hydrate-bearing sediment sample. In: Presented at the ISOPE ocean mining symposium. Maui, Hawaii, USA. June 19–24. (2011).

  8. Hyodo, M.; Li, Y.; Yoneda, J.; Nakata, Y.; Yoshimoto, N.; Nishimura, A.: Effects of dissociation on the shear strength and deformation behavior of methane hydrate-bearing sediments. Mar. Petrol. Geol. 51, 52–62 (2014)

    Article  Google Scholar 

  9. Miyazaki, K.; Yoshihiro, E.; Tenma, N.; Tsutomu, Y.: Effects of particle-size distribution on the viscoelasticity of artificial methane-hydrate-bearing sand. Int. J. Offshore Polar Eng. 25, 112–119 (2015)

    Article  Google Scholar 

  10. Yoneda, J.; Hyodo, M.; Yoshimoto, N.; Nakata, Y.; Kato, A.: Development of high-pressure low-temperature plane strain testing apparatus for methane hydrate-bearing sand. Soils Found. 53, 774–783 (2013)

    Article  Google Scholar 

  11. Waite, W.F.; Winters, W.J.; Mason, D.H.: Methane hydrate formation in partially water-saturated Ottawa sand. Am. Mineral. 89, 1202–1207 (2004)

    Article  Google Scholar 

  12. Hyodo, M.; Nakata, Y.; Yoshimoto, N.; Orense, R.: Shear behaviour of methane hydrate-bearing sand. In: Presented at the international offshore and polar engineering conference. Lisbon, Portugal. July 1–6. (2007).

  13. Miyazaki, K.; Masui, A.; Sakamoto, Y.; Tenma, N.; Tsutomu, Y.: Effect of confining pressure on triaxial compressive properties of artificial methane hydrate bearing sediments. In: Presented at the Annual Offshore Technology Conference. Houston, Texas, USA. May 3–6 (2010).

  14. Zhang, X.; Wang, S.Y.; Li, Q.P.; Zhao, J.; Wang, A.L.: Experimental study of mechanical properties of gas hydrate deposits. Yantu Lixue/Rock Soil Mech. 31, 3069–3074 (2010)

    Google Scholar 

  15. Yan, R.; Wei, C.; Fu, X.; Zhong, X.; Xiao, G.: Influence of occurrence mode of hydrate on mechanical behaviour of hydrate-bearing soils. Yanshilixue Yu Gongcheng Xuebao/Chin. J. Rock Mech. Eng. 32, 4115–4122 (2013).

  16. Li, Y.; Song, Y.; Yu, F.; Liu, W.; Wang, R.: Effect of confining pressure on mechanical behavior of methane hydrate-bearing sediments. Petrol. Explor. Develop. Online. 38, 637–640 (2011)

    Article  Google Scholar 

  17. Wang, J.; Peng, X.; Liu, L.; Li, Y.; Wang, J.: Multi-hole throttling effect and the erosion characteristics of the high pressure natural gas. Acta Petrol. Sin. (Petrol. Process. Sect.). 34(3), 521–529 (2018).

  18. Sun, C.: Experiment for effect of water-soluble ions on formation of methane hydrate in oil-water emulsion. Oil Gas Storage Transp. 40(7), 791–795 (2021)

    Google Scholar 

  19. Masui, A.; Miyazaki, K.; Haneda, H.; Ogata, Y.; Aoki, K.: Mechanical characteristics of natural and artificial gas hydrate bearing sediments. In: Presented at the 6th international conference on gas hydrates. Goa, India. October 6–10. (2008).

  20. Hyodo, M.; Yoneda, J.; Yoshimoto, N.; Nakata, Y.: Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed. Soils Found. 53, 299–314 (2013)

    Article  Google Scholar 

  21. Yu, F.; Song, Y.; Liu, W.; Li, Y.; Lam, W.: Analyses of stress strain behavior and constitutive model of artificial methane hydrate. J. Petrol. Sci. Eng. 77, 183–188 (2011)

    Article  Google Scholar 

  22. Yan, C.; Cheng, Y.; Li, M.; Han, Z.; Zhang, H.; Li, Q.; Teng, F.; Ding, J.: Mechanical experiments and constitutive model of natural gas hydrate reservoirs. Int. J. Hydro. Energy. 42, 19810–19818 (2017)

    Article  Google Scholar 

  23. Uchida, S.; Soga, K.; Yamamoto, K.: Critical state soil constitutive model for methane hydrate soil. J. Geophys. Res. Solid Earth. 117 (2012).

  24. Pinkert, S.; Grozic, J.L.H.: Prediction of the mechanical response of hydrate-bearing sands. J. Geophys. Res. Solid Earth. 119, 4695–4707 (2014)

    Article  Google Scholar 

  25. Lin, J.; Seol, Y.; Choi, J.H.: An SMP critical state model for methane hydrate-bearing sands. Int. J. Numer. Anal. Methods Geomech. 39, 969–987 (2015)

    Article  Google Scholar 

  26. Pinkert, S.: Rowe’s stress-dilatancy theory for hydrate-bearing sand. Int. J. Geomech. 17, 06016008 (2017)

    Article  Google Scholar 

  27. Zhang, X.; Lin, J.; Lu, X.; Liu, L.; Liu, C.; Li, M.; Su, Y.: A hypoplastic model for gas hydrate-bearing sandy sediments. Int. J. Numer. Anal. Methods Geomech. 42, 931–942 (2018)

    Article  Google Scholar 

  28. Behseresht, J.; Prodanovic, M.; Bryant, S.L.; Jain, A.K.; Juanes, R.: Mechanisms by which methane gas and methane hydrate coexist in ocean sediments. In: Presented at the 2008 offshore technology conference. Houston, Texas, USA. May 5–8. (2008).

  29. Brugada, J.; Cheng, Y.P.; Soga, K.; Santamarina, J.C.: Discrete element modelling of geomechanical behaviour of methane hydrate soils with pore-filling hydrate distribution. Granular Matter 12, 517–525 (2010)

    Article  Google Scholar 

  30. Jung, J.; Santamarina, J.; Soga, K.: Stress-strain response of hydrate-bearing sands: Numerical study using discrete element method simulations. J. Geophys. Res. (Solid Earth) 117, 4202 (2012)

    Article  Google Scholar 

  31. Zhang, J.; Zhao, C.; Xiong, Z.: Meso-level simulation of gas hydrate dissociation in low-permeability sediments. Theor. Appl. Mech. Lett. 4, 062002 (2014)

    Article  Google Scholar 

  32. Shen, J.; Chiu, C.F.; Ng, C.W.W.; Lei, G.H.; Xu, J.: A state-dependent critical state model for methane hydrate-bearing sand. Comput. Geotech. 75, 1–11 (2016)

    Article  Google Scholar 

  33. Xu, M.; Song, E.; Jiang, H.; Hong, J.: DEM simulation of the undrained shear behavior of sand containing dissociated gas hydrate. Granular Matter. 18 (2016).

  34. Kreiter, S.; Feeser, V.; Kreiter, M.; Mörz, T.; Grupe, B.: A distinct element simulation including surface tension: towards the modeling of gas hydrate behavior. Comput. Geosci. 11, 117–129 (2007)

    Article  MATH  Google Scholar 

  35. Kim, Y.J.; Yun, T.S.: Thermal conductivity of methane hydrate-bearing Ulleung Basin marine sediments: laboratory testing and numerical evaluation. Mar. Petrol. Geol. 47, 77–84 (2013)

    Article  Google Scholar 

  36. Mahabadi, N.; Jang, J.: Relative water and gas permeability for gas production from hydrate-bearing sediments. Geochem. Geophys. Geosyst. 15, 2346–2353 (2014)

    Article  Google Scholar 

  37. Jung, J.: Gas production from hydrate-bearing sediments: geo-mechanical implications. Georg. Instit. Technol. Atlanta USA. (2010).

  38. Vinod, J.S.; Hyodo, M.; Indraratna, B.; Miller, R.K.: DEM modelling of methane hydrate bearing sand. Aust. Geomech. J. 49, 175–182 (2014)

    Google Scholar 

  39. Jiang, M.; Peng, D.; Ooi, J.Y.: DEM investigation of mechanical behavior and strain localization of methane hydrate bearing sediments with different temperatures and water pressures. Eng. Geol. 223, 92–109 (2017)

    Article  Google Scholar 

  40. Yu, Y.; Cheng, Y.P.; Xu, X.; Soga, K.: Discrete element modelling of methane hydrate soil sediments using elongated soil particles. Comput. Geotech. 80, 397–409 (2016)

    Article  Google Scholar 

  41. Zhang, G.; Jiang, J.; Guo, J.; He, Z.; Deng, X.; Zhang, Q.: Qiu, Z: The method of making loosely compacted sand cores. Drlling Fluid Compl. Fluid. 24(01), 23–25 (2007)

    Google Scholar 

  42. Duncan, J.M.; Chang, C.Y.: Nonlinear analysis of stress and strain in soils. J. Soil Mech. Found. Eng. Div. ASCE. (SMS) 96, 1629–1633 (1970)

    Article  Google Scholar 

  43. Kondner, R.L.: Hyperbolic stress-strain response: cohesive soils. J. Soil Mech. Found. Div. 89, 115–144 (1963)

    Article  Google Scholar 

  44. Zhang, F.; Zhu, H.; Zhou, H.; Guo, J.; Huang, B.: Discrete-element-method/computational-fluid-dynamics coupling simulation of proppant embedment and fracture conductivity after hydraulic fracturing. SPE J. 22, 632–644 (2017)

    Article  Google Scholar 

  45. Zhu, H.; Shen, J.; Zhang, F.; Huang, B.; Zhang, L.; Huang, W.; McLennan, J.D.: DEM-CFD modeling of proppant pillar deformation and stability during the fracturing fluid flowback. Geofluids 2018, 1–18 (2018)

    Google Scholar 

  46. Zhu, H.; Shen, J.; Zhang, F.: A fracture conductivity model for channel fracturing and its implementation with Discrete Element Method. J. Petrol. Sci. Eng. 172, 149–161 (2019)

    Article  Google Scholar 

  47. Tohidi, B.; Anderson, R.; Clennell, M.B.; Burgass, R.W.; Biderkab, A.B.: Visual observation of gas-hydrate formation and dissociation in synthetic porous media by means of glass micromodels. Geology 29, 867 (2001)

    Article  Google Scholar 

  48. Matsushima, T.; Saomoto, H.; Matsumoto, M.: Discrete element simulation of an assembly of irregularly-shaped grains: quantitative comparison with experiments. In: Presented at the 16th ASCE engineering mechanics conference. Seattle, USA. July 16–18. (2003).

  49. Coetzee, C.J.: Review: Calibration of the discrete element method. Powder Technol. 310, 104–142 (2017)

    Article  Google Scholar 

  50. Cundall, P.A.; Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique. 29, 47–65 (1979)

    Article  Google Scholar 

  51. Zhou, J.; Huang, H.; Deo, M.: Modeling the interaction between hydraulic and natural fractures using dual-lattice discrete element method. In: Presented at the 49th US rock mechanics/geomechanics symposium. American Rock Mechanics Association: San Francisco, California. June 29-July 1. (2015).

  52. Zhu, H.Y.; Shen, J.D.; Zhang, F.S.; Liu, Q.Y.; McLennan, J.D.: Nonlinear constitutive model and discrete-element-method modeling of synthetic Methane Hydrate sand. In: Presented at the 52nd US rock mechanics/geomechanics symposium. June 17–20. (2018).

  53. Adler, P.M.: Multiphase Flow in Porous Media, 2nd edn. Springer, Berlin, German (1996)

    Google Scholar 

  54. Belkhatir, M.; Schanz, T.; Arab, A.; Della, N.; Kadri, A.: Insight into the effects of gradation on the pore pressure generation of sand–silt mixtures. Geotech. Test. J. 37, 922–931 (2014)

    Article  Google Scholar 

  55. Kokusho, T.; Hara, T.; Hiraoka, R.: Undrained shear strength of granular soils with different particle gradations. J. Geotech. Geoenviron. Eng. 130, 621–629 (2004)

    Article  Google Scholar 

  56. Amirpour Harehdasht, S.; Karray, M.; Hussien, M.N.; Chekired, M.: Influence of particle size and gradation on the stress-dilatancy behavior of granular materials during drained triaxial compression. Int. J. Geomech. 17, 04017077 (2017)

    Article  Google Scholar 

  57. Yang, G.; Yu, T.; Hanlong, L.: Numerical simulation of undrained triaxial test using 3D discrete element modeling. In: Presented at the GeoHunan international conference. Changsha, Hunan, China. June 9–11. (2011).

  58. Zoback, M.D.: Reservoir Geomechanics. Cambridge University Press, Cambridge, United Kingdom (2007)

    Book  MATH  Google Scholar 

  59. Winters, W.J.; Waite, W.F.; Mason, D.H.; Dillon, W.P.; Pecher, I.A.: Sediment properties associated with gas hydrate formation. In: Presented at the fourth international conference on gas hydrates. Yokohama Symposia, Yokohama, Japan. May 19–23. (2002).

  60. Bishop, A.W.; Eldin, G.: Undrained triaxial tests on saturated sands and their significance in the general theory of shear strength. Geotechnique 2, 13–32 (1950)

    Article  Google Scholar 

  61. Asaoka, A.; Nakano, M.; Noda, T.: Soil-water coupled behavior of heavily overconsolidated clay near/at critical state. Soils Found. 37, 13–28 (1997)

    Article  Google Scholar 

  62. Ishihara, K.; Takatsu, H.: Effects of over-consolidation and K0 conditions on the liquefaction characteristics of sands. Soils Found. 19, 59–68 (1979)

    Article  Google Scholar 

  63. Tan, B.B.: Geotechnical characterization of sediments from Hydrate Ridge, Cascadia Continental Margin. Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. (2004).

  64. Read, H.E.; Hegemier, G.: Strain softening of rock, soil and concrete: a review article. Mech. Mater. Mech. Mater. 3, 271–294 (1984)

    Article  Google Scholar 

  65. Vaid, Y.; Chern, J.C. Cyclic and monotonic undrained response of saturated sands. In: Presented at the Advances in the Art of Testing Soils Under Cyclic Conditions. Detroit, Michigan, United States October 2. (1985).

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Nos. 52192622, 51874253, U19A2097, U20A202) and the open fund (PLC2021040) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuanhe Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Tang, X., Zhang, F. et al. Mechanical Behavior of Methane–Hydrate–Bearing Sand with Nonlinear Constitutive Model. Arab J Sci Eng 47, 12141–12167 (2022). https://doi.org/10.1007/s13369-022-06914-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06914-2

Keywords

Navigation