Skip to main content

Advertisement

Log in

Ciprofloxacin Degradation with Persulfate Activated with the Synergistic Effect of the Activated Carbon and Cobalt Dual Catalyst

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The antibiotic level in the aquatic environment has reached threatening levels for human health and ecosystems. Therefore, it is of vital importance to effectively treat antibiotic-containing wastewater. Advanced oxidation processes (AOPs), especially heterogeneous catalytic processes, are considered the most effective process to treat the residual antibiotics in the wastewaters. In the AOPs, activated carbon-supported catalysts have a synergistic effect thanks to the more effective surface area and by transferring electrons to generate radicals through sp2 covalent carbon bond and oxygen functional groups. In this study, oxidative degradation of ciprofloxacin (CIP) in water by persulfate (PS) activated with an activated carbon-supported cobalt-based dual catalyst (Co-AC) synthesized from biomass mixture and cobalt chloride via chemical activation and pyrolysis was examined. The effects of catalyst dosage, contact time, pH, PS concentration and temperature on the performance of the catalyst were investigated in detail. The synergistic effect of the system depending on various combinations (CIP + PS, CIP + Co-AC, CIP + PS + Co-AC) was determined. Co-AC exhibited high catalytic activity in the CIP oxidation with PS activation, even in various water matrices containing some anions such as Cl, SO42− and NO3. CIP in the solution could be completely degraded within 120 min in the presence of 0.75 g/L catalyst, 2 mM PS at 25 °C without any pH adjustment. Quenching experiments showed that the Co-AC dual catalyst successfully activated PS to generate SO4•− and •OH radicals, but the SO4•− was more dominant on the CIP degradation. Kinetic analysis of experimental data revealed that the CIP degradation reaction fits the pseudo-first-order kinetics with an activation energy of 62.69 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Carvalho, I.T.; Santos, L.: Antibiotics in the aquatic environments: a review of the European scenario. Environ. Int. 94, 736–757 (2016). https://doi.org/10.1016/j.envint.2016.06.025

    Article  Google Scholar 

  2. Kim, M.-K.; Zoh, K.-D.: Occurrence and removals of micropollutants in water environment. Environ. Eng. Res. 21(4), 319–332 (2016). https://doi.org/10.4491/eer.2016.115

    Article  Google Scholar 

  3. Kumar, M.; Jaiswal, S.; Sodhi, K.K.; Shree, P.; Singh, D.K.; Agrawal, P.K.; Shukla, P.: Antibiotics bioremediation: perspectives on its ecotoxicity and resistance. Environ. Int. 124, 448–461 (2019). https://doi.org/10.1016/j.envint.2018.12.065

    Article  Google Scholar 

  4. Xiong, W.; Sun, Y.; Ding, X.; Wang, M.; Zeng, Z.: Selective pressure of antibiotics on ARGs and bacterial communities in manure-polluted freshwater-sediment microcosms. Front. Microbiol. 6, 194–194 (2015). https://doi.org/10.3389/fmicb.2015.00194

    Article  Google Scholar 

  5. Li, Y.; Hu, Y.; Ai, X.; Qiu, J.; Wang, X.: Acute and sub-acute effects of enrofloxacin on the earthworm species Eisenia fetida in an artificial soil substrate. Eur. J. Soil Biol. 66, 19–23 (2015). https://doi.org/10.1016/j.ejsobi.2014.11.004

    Article  Google Scholar 

  6. Zhu, L.; Santiago-Schübel, B.; Xiao, H.; Hollert, H.; Kueppers, S.: Electrochemical oxidation of fluoroquinolone antibiotics: mechanism, residual antibacterial activity and toxicity change. Water Res. 102, 52–62 (2016). https://doi.org/10.1016/j.watres.2016.06.005

    Article  Google Scholar 

  7. Chandrasekaran, A.; Patra, C.; Narayanasamy, S.; Subbiah, S.: Adsorptive removal of Ciprofloxacin and Amoxicillin from single and binary aqueous systems using acid-activated carbon from Prosopis juliflora. Environ. Res. 188, 109825–109825 (2020). https://doi.org/10.1016/j.envres.2020.109825

    Article  Google Scholar 

  8. Tran, N.H.; Reinhard, M.; Gin, K.Y.-H.: Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res. 133, 182–207 (2018). https://doi.org/10.1016/j.watres.2017.12.029

    Article  Google Scholar 

  9. Larsson, D.G.; de Pedro, C.; Paxeus, N.: Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J. Hazard Mater. 148(3), 751–755 (2007). https://doi.org/10.1016/j.jhazmat.2007.07.008

    Article  Google Scholar 

  10. Chen, L.; Ni, R.; Yuan, T.; Gao, Y.; Kong, W.; Zhang, P.; Yue, Q.; Gao, B.: Effects of green synthesis, magnetization, and regeneration on ciprofloxacin removal by bimetallic nZVI/Cu composites and insights of degradation mechanism. J. Hazard. Mater. 382, 121008 (2020). https://doi.org/10.1016/j.jhazmat.2019.121008

    Article  Google Scholar 

  11. Homem, V.; Santos, L.: Degradation and removal methods of antibiotics from aqueous matrices: a review. J. Environ. Manage. 92(10), 2304–2347 (2011). https://doi.org/10.1016/j.jenvman.2011.05.023

    Article  Google Scholar 

  12. Ahmed, M.J.: Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: review. J. Environ. Manage. 190, 274–282 (2017). https://doi.org/10.1016/j.jenvman.2016.12.073

    Article  Google Scholar 

  13. Wang, B.; Xu, X.; Tang, H.; Mao, Y.; Chen, H.; Ji, F.: Highly efficient adsorption of three antibiotics from aqueous solutions using glucose-based mesoporous carbon. Appl. Surf. Sci. 528, 147048–147048 (2020). https://doi.org/10.1016/j.apsusc.2020.147048

    Article  Google Scholar 

  14. Zhang, X.; Li, Y.; Wu, M.; Pang, Y.; Hao, Z.; Hu, M.; Qiu, R.; Chen, Z.: Enhanced adsorption of tetracycline by an iron and manganese oxides loaded biochar: kinetics, mechanism and column adsorption. Biores. Technol. 320, 124264–124264 (2021). https://doi.org/10.1016/j.biortech.2020.124264

    Article  Google Scholar 

  15. Chen, J.; Liu, Y.-S.; Zhang, J.-N.; Yang, Y.-Q.; Hu, L.-X.; Yang, Y.-Y.; Zhao, J.-L.; Chen, F.-R.; Ying, G.-G.: Removal of antibiotics from piggery wastewater by biological aerated filter system: treatment efficiency and biodegradation kinetics. Biores. Technol. 238, 70–77 (2017). https://doi.org/10.1016/j.biortech.2017.04.023

    Article  Google Scholar 

  16. Cha, J.; Carlson, K.H.: Biodegradation of veterinary antibiotics in lagoon waters. Process Saf. Environ. Prot. 127, 306–313 (2019). https://doi.org/10.1016/j.psep.2019.04.009

    Article  Google Scholar 

  17. Han, Y.; Yang, L.; Chen, X.; Cai, Y.; Zhang, X.; Qian, M.; Chen, X.; Zhao, H.; Sheng, M.; Cao, G.; Shen, G.: Removal of veterinary antibiotics from swine wastewater using anaerobic and aerobic biodegradation. Sci. Total Environ. 709, 136094–136094 (2020). https://doi.org/10.1016/j.scitotenv.2019.136094

    Article  Google Scholar 

  18. Mukimin, A.; Vistanty, H.; Zen, N.: Hybrid advanced oxidation process (HAOP) as highly efficient and powerful treatment for complete demineralization of antibiotics. Sep. Purif. Technol. 241, 116728 (2020). https://doi.org/10.1016/j.seppur.2020.116728

    Article  Google Scholar 

  19. Rekhate, C.V.; Srivastava, J.K.: Recent advances in ozone-based advanced oxidation processes for treatment of wastewater: a review. Chem. Eng. J. Adv. 3, 100031 (2020). https://doi.org/10.1016/j.ceja.2020.100031

    Article  Google Scholar 

  20. Seibert, D.; Zorzo, C.F.; Borba, F.H.; de Souza, R.M.; Quesada, H.B.; Bergamasco, R.; Baptista, A.T.; Inticher, J.J.: Occurrence, statutory guideline values and removal of contaminants of emerging concern by electrochemical advanced oxidation processes: a review. Sci. Total Environ. 748, 141527 (2020). https://doi.org/10.1016/j.scitotenv.2020.141527

    Article  Google Scholar 

  21. Wang, J.; Zhuan, R.: Degradation of antibiotics by advanced oxidation processes: an overview. Sci. Total Environ. 701, 135023 (2020). https://doi.org/10.1016/j.scitotenv.2019.135023

    Article  Google Scholar 

  22. Ashraf, A.; Liu, G.; Yousaf, B.; Arif, M.; Ahmed, R.; Irshad, S.; Cheema, A.I.; Rashid, A.; Gulzaman, H.: Recent trends in advanced oxidation process-based degradation of erythromycin: pollution status, eco-toxicity and degradation mechanism in aquatic ecosystems. Sci. Total Environ. 772, 145389–145389 (2021). https://doi.org/10.1016/j.scitotenv.2021.145389

    Article  Google Scholar 

  23. Dieu Cam, N.T.; Pham, H.-D.; Pham, T.-D.; Thu Phuong, T.T.; Van Hoang, C.; Thanh Tung, M.H.; Trung, N.T.; Huong, N.T.; Thu Hien, T.T.: Novel photocatalytic performance of magnetically recoverable MnFe2O4/BiVO4 for polluted antibiotics degradation. Ceram. Int. 47(2), 1686–1692 (2021). https://doi.org/10.1016/j.ceramint.2020.08.285

    Article  Google Scholar 

  24. Gong, C.; Chen, F.; Yang, Q.; Luo, K.; Yao, F.; Wang, S.; Wang, X.; Wu, J.; Li, X.; Wang, D.; Zeng, G.: Heterogeneous activation of peroxymonosulfate by Fe-Co layered doubled hydroxide for efficient catalytic degradation of Rhoadmine B. Chem. Eng. J. 321, 222–232 (2017). https://doi.org/10.1016/j.cej.2017.03.117

    Article  Google Scholar 

  25. Dewil, R.; Mantzavinos, D.; Poulios, I.; Rodrigo, M.A.: New perspectives for advanced oxidation processes. J. Environ. Manage. 195, 93–99 (2017). https://doi.org/10.1016/j.jenvman.2017.04.010

    Article  Google Scholar 

  26. Zhu, S.; Xu, Y.; Zhu, Z.; Liu, Z.; Wang, W.: Activation of peroxymonosulfate by magnetic Co-Fe/SiO2 layered catalyst derived from iron sludge for ciprofloxacin degradation. Chem. Eng. J. 384, 123298–123298 (2020). https://doi.org/10.1016/j.cej.2019.123298

    Article  Google Scholar 

  27. Yang, Q.; Ma, Y.; Chen, F.; Yao, F.; Sun, J.; Wang, S.; Yi, K.; Hou, L.; Li, X.; Wang, D.: Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water. Chem. Eng. J. 378, 122149–122149 (2019). https://doi.org/10.1016/j.cej.2019.122149

    Article  Google Scholar 

  28. Ikehata, K.; Jodeiri Naghashkar, N.; Gamal El-Din, M.: Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Sci. Eng. 28(6), 353–414 (2006). https://doi.org/10.1080/01919510600985937

    Article  Google Scholar 

  29. Sun, J.; Wu, T.; Liu, Z.; Shao, B.; Liang, Q.; He, Q.; Luo, S.; Pan, Y.; Zhao, C.; Huang, D.: Peroxymonosulfate activation induced by spinel ferrite nanoparticles and their nanocomposites for organic pollutants removal: a review. J. Clean. Prod. (2022). https://doi.org/10.1016/j.jclepro.2022.131143

    Article  Google Scholar 

  30. Li, X.; Jie, B.; Lin, H.; Deng, Z.; Qian, J.; Yang, Y.; Zhang, X.: Application of sulfate radicals-based advanced oxidation technology in degradation of trace organic contaminants (TrOCs): recent advances and prospects. J. Environ. Manage. 308, 114664 (2022). https://doi.org/10.1016/j.jenvman.2022.114664

    Article  Google Scholar 

  31. Wang, J.; Wang, S.: Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 334, 1502–1517 (2018). https://doi.org/10.1016/j.cej.2017.11.059

    Article  Google Scholar 

  32. Devi, P.; Das, U.; Dalai, A.K.: In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems. Sci. Total Environ. 571, 643–657 (2016). https://doi.org/10.1016/j.scitotenv.2016.07.032

    Article  Google Scholar 

  33. Jonidi Jafari, A.; Kakavandi, B.; Jaafarzadeh, N.; Rezaei Kalantary, R.; Ahmadi, M.; Akbar Babaei, A.: Fenton-like catalytic oxidation of tetracycline by AC@Fe3O4 as a heterogeneous persulfate activator: adsorption and degradation studies. J. Ind. Eng. Chem. 45, 323–333 (2017). https://doi.org/10.1016/j.jiec.2016.09.044

    Article  Google Scholar 

  34. Ghanbari, F.; Moradi, M.: Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review. Chem. Eng. J. 310, 41–62 (2017). https://doi.org/10.1016/j.cej.2016.10.064

    Article  Google Scholar 

  35. Mirzaei, A.; Chen, Z.; Haghighat, F.; Yerushalmi, L.: Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes: a review. Chemosphere 174, 665–688 (2017). https://doi.org/10.1016/j.chemosphere.2017.02.019

    Article  Google Scholar 

  36. Velo-Gala, I.; López-Peñalver, J.J.; Sánchez-Polo, M.; Rivera-Utrilla, J.: Activated carbon as photocatalyst of reactions in aqueous phase. Appl. Catal. B 142–143, 694–704 (2013). https://doi.org/10.1016/j.apcatb.2013.06.003

    Article  Google Scholar 

  37. Babaei, A.A.; Azari, A.; Kalantary, R.R.; Kakavandi, B.: Enhanced removal of nitrate from water using nZVI@MWCNTs composite: synthesis, kinetics and mechanism of reduction. Water Sci. Technol. 72(11), 1988–1999 (2015). https://doi.org/10.2166/wst.2015.417

    Article  Google Scholar 

  38. Oh, W.-D.; Dong, Z.; Lim, T.-T.: Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects. Appl. Catal. B 194, 169–201 (2016). https://doi.org/10.1016/j.apcatb.2016.04.003

    Article  Google Scholar 

  39. Wei, M.; Gao, L.; Li, J.; Fang, J.; Cai, W.; Li, X.; Xu, A.: Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation. J. Hazard. Mater. 316, 60–68 (2016). https://doi.org/10.1016/j.jhazmat.2016.05.031

    Article  Google Scholar 

  40. Yao, Y.; Yu, M.; Yin, H.; Zhang, Y.; Zheng, H.; Zhang, Y.; Wang, S.: Nano-Fe0 embedded in N-doped carbon architectures for enhanced oxidation of aqueous contaminants. Chem. Eng. Sci. 227, 115941–115941 (2020). https://doi.org/10.1016/j.ces.2020.115941

    Article  Google Scholar 

  41. Yang, Q.; Choi, H.; Chen, Y.; Dionysiou, D.D.: Heterogeneous activation of peroxymonosulfate by supported cobalt catalysts for the degradation of 2,4-dichlorophenol in water: the effect of support, cobalt precursor, and UV radiation. Appl. Catal. B 77(3), 300–307 (2008). https://doi.org/10.1016/j.apcatb.2007.07.020

    Article  Google Scholar 

  42. Qian, H.; Hou, Q.; Yu, G.; Nie, Y.; Bai, C.; Bai, X.; Ju, M.: Enhanced removal of dye from wastewater by Fenton process activated by core-shell NiCo2O4@FePc catalyst. J. Clean. Prod. 273, 123028 (2020). https://doi.org/10.1016/j.jclepro.2020.123028

    Article  Google Scholar 

  43. Rahmani-Aliabadi, A.; Nezamzadeh-Ejhieh, A.: A visible light FeS/Fe2S3/zeolite photocatalyst towards photodegradation of ciprofloxacin. J. Photochem. Photobiol., A 357, 1–10 (2018). https://doi.org/10.1016/j.jphotochem.2018.02.006

    Article  Google Scholar 

  44. Ji, F.; Li, C.; Liu, Y.; Liu, P.: Heterogeneous activation of peroxymonosulfate by Cu/ZSM5 for decolorization of Rhodamine B. Sep. Purif. Technol. 135, 1–6 (2014). https://doi.org/10.1016/j.seppur.2014.07.050

    Article  Google Scholar 

  45. Xu, B.; Jiang, W.; Wang, L.; Thokchom, B.; Qiu, P.; Luo, W.: Yolk-shell structured Fe@void@mesoporous silica with high magnetization for activating peroxymonosulfate. Chin. Chem. Lett. 31(7), 2003–2006 (2020). https://doi.org/10.1016/j.cclet.2019.12.035

    Article  Google Scholar 

  46. Ding, W.; Huang, X.; Zhang, W.; Wu, F.; Li, J.: Sulfite activation by a low-leaching silica-supported copper catalyst for oxidation of As(III) in water at circumneutral pH. Chem. Eng. J. 359, 1518–1526 (2019). https://doi.org/10.1016/j.cej.2018.11.020

    Article  Google Scholar 

  47. Yan, J.; Han, L.; Gao, W.; Xue, S.; Chen, M.: Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene. Biores. Technol. 175, 269–274 (2015). https://doi.org/10.1016/j.biortech.2014.10.103

    Article  Google Scholar 

  48. Ouyang, D.; Yan, J.; Qian, L.; Chen, Y.; Han, L.; Su, A.; Zhang, W.; Ni, H.; Chen, M.: Degradation of 1,4-dioxane by biochar supported nano magnetite particles activating persulfate. Chemosphere 184, 609–617 (2017). https://doi.org/10.1016/j.chemosphere.2017.05.156

    Article  Google Scholar 

  49. Wang, H.; Guo, W.; Yin, R.; Du, J.; Wu, Q.; Luo, H.; Liu, B.; Sseguya, F.; Ren, N.: Biochar-induced Fe(III) reduction for persulfate activation in sulfamethoxazole degradation: Insight into the electron transfer, radical oxidation and degradation pathways. Chem. Eng. J. 362, 561–569 (2019). https://doi.org/10.1016/j.cej.2019.01.053

    Article  Google Scholar 

  50. An, L.; Xiao, P.: Zero-valent iron/activated carbon microelectrolysis to activate peroxydisulfate for efficient degradation of chlortetracycline in aqueous solution. RSC Adv. 10(33), 19401–19409 (2020). https://doi.org/10.1039/D0RA03639K

    Article  Google Scholar 

  51. Yang, Z.; Li, Y.; Zhang, X.; Cui, X.; He, S.; Liang, H.; Ding, A.: Sludge activated carbon-based CoFe2O4-SAC nanocomposites used as heterogeneous catalysts for degrading antibiotic norfloxacin through activating peroxymonosulfate. Chem. Eng. J. 384, 123319 (2020). https://doi.org/10.1016/j.cej.2019.123319

    Article  Google Scholar 

  52. Kang, J.; Duan, X.; Wang, C.; Sun, H.; Tan, X.; Tade, M.O.; Wang, S.: Nitrogen-doped bamboo-like carbon nanotubes with Ni encapsulation for persulfate activation to remove emerging contaminants with excellent catalytic stability. Chem. Eng. J. 332, 398–408 (2018). https://doi.org/10.1016/j.cej.2017.09.102

    Article  Google Scholar 

  53. Shang, Y.; Chen, C.; Zhang, P.; Yue, Q.; Li, Y.; Gao, B.; Xu, X.: Removal of sulfamethoxazole from water via activation of persulfate by Fe3C@NCNTs including mechanism of radical and nonradical process. Chem. Eng. J. 375, 122004 (2019). https://doi.org/10.1016/j.cej.2019.122004

    Article  Google Scholar 

  54. Olmez-Hanci, T.; Arslan-Alaton, I.; Gurmen, S.; Gafarli, I.; Khoei, S.; Safaltin, S.; Yesiltepe Ozcelik, D.: Oxidative degradation of Bisphenol A by carbocatalytic activation of persulfate and peroxymonosulfate with reduced graphene oxide. J. Hazard. Mater. 360, 141–149 (2018). https://doi.org/10.1016/j.jhazmat.2018.07.098

    Article  Google Scholar 

  55. Wu, S.; He, H.; Li, X.; Yang, C.; Zeng, G.; Wu, B.; He, S.; Lu, L.: Insights into atrazine degradation by persulfate activation using composite of nanoscale zero-valent iron and graphene: performances and mechanisms. Chem. Eng. J. 341, 126–136 (2018). https://doi.org/10.1016/j.cej.2018.01.136

    Article  Google Scholar 

  56. Yan, J.; Gao, W.; Dong, M.; Han, L.; Qian, L.; Nathanail, C.P.; Chen, M.: Degradation of trichloroethylene by activated persulfate using a reduced graphene oxide supported magnetite nanoparticle. Chem. Eng. J. 295, 309–316 (2016). https://doi.org/10.1016/j.cej.2016.01.085

    Article  Google Scholar 

  57. Jiang, X.; Guo, Y.; Zhang, L.; Jiang, W.; Xie, R.: Catalytic degradation of tetracycline hydrochloride by persulfate activated with nano Fe0 immobilized mesoporous carbon. Chem. Eng. J. 341, 392–401 (2018). https://doi.org/10.1016/j.cej.2018.02.034

    Article  Google Scholar 

  58. Zhao, C.; Zhong, S.; Li, C.; Zhou, H.; Zhang, S.: Property and mechanism of phenol degradation by biochar activated persulfate. J. Market. Res. 9(1), 601–609 (2020). https://doi.org/10.1016/j.jmrt.2019.10.089

    Article  Google Scholar 

  59. Gao, Y.; Wang, Q.; Ji, G.; Li, A.: Degradation of antibiotic pollutants by persulfate activated with various carbon materials. Chem. Eng. J. 429, 132387 (2022). https://doi.org/10.1016/j.cej.2021.132387

    Article  Google Scholar 

  60. Lima, M.J.; Leblebici, M.E.; Dias, M.M.; Lopes, J.C.B.; Silva, C.G.; Silva, A.M.T.; Faria, J.L.: Continuous flow photo-Fenton treatment of ciprofloxacin in aqueous solutions using homogeneous and magnetically recoverable catalysts. Environ. Sci. Pollut. Res. 21(19), 11116–11125 (2014). https://doi.org/10.1007/s11356-014-2515-6

    Article  Google Scholar 

  61. Salari, M.; Rakhshandehroo, G.R.; Nikoo, M.R.: Degradation of ciprofloxacin antibiotic by Homogeneous Fenton oxidation: Hybrid AHP-PROMETHEE method, optimization, biodegradability improvement and identification of oxidized by-products. Chemosphere 206, 157–167 (2018). https://doi.org/10.1016/j.chemosphere.2018.04.086

    Article  Google Scholar 

  62. Huang, A.; Zhi, D.; Tang, H.; Jiang, L.; Luo, S.; Zhou, Y.: Effect of Fe2+, Mn2+ catalysts on the performance of electro-Fenton degradation of antibiotic ciprofloxacin, and expanding the utilizing of acid mine drainage. Sci. Total Environ. 720, 137560 (2020). https://doi.org/10.1016/j.scitotenv.2020.137560

    Article  Google Scholar 

  63. Deng, J.; Xu, M.; Feng, S.; Qiu, C.; Li, X.; Li, J.: Iron-doped ordered mesoporous Co3O4 activation of peroxymonosulfate for ciprofloxacin degradation: Performance, mechanism and degradation pathway. Sci. Total Environ. 658, 343–356 (2019). https://doi.org/10.1016/j.scitotenv.2018.12.187

    Article  Google Scholar 

  64. Mao, Q.; Zhou, Y.; Yang, Y.; Zhang, J.; Liang, L.; Wang, H.; Luo, S.; Luo, L.; Jeyakumar, P.; Ok, Y.S.; Rizwan, M.: Experimental and theoretical aspects of biochar-supported nanoscale zero-valent iron activating H2O2 for ciprofloxacin removal from aqueous solution. J. Hazard. Mater. 380, 120848–120848 (2019). https://doi.org/10.1016/j.jhazmat.2019.120848

    Article  Google Scholar 

  65. Xing, S.; Li, W.; Liu, B.; Wu, Y.; Gao, Y.: Removal of ciprofloxacin by persulfate activation with CuO: A pH-dependent mechanism. Chem. Eng. J. 382, 122837–122837 (2020). https://doi.org/10.1016/j.cej.2019.122837

    Article  Google Scholar 

  66. Choong, Z.-Y.; Lin, K.-Y.A.; Oh, W.-D.: Copper ferrite anchored on hexagonal boron nitride as peroxymonosulfate activator for ciprofloxacin removal. Mater. Lett. 285, 129079–129079 (2021). https://doi.org/10.1016/j.matlet.2020.129079

    Article  Google Scholar 

  67. Alamgholiloo, H.; Hashemzadeh, B.; Noroozi Pesyan, N.; Sheikhmohammadi, A.; Asgari, E.; Yeganeh, J.; Hashemzadeh, H.: A facile strategy for designing core-shell nanocomposite of ZIF-67/Fe3O4: a novel insight into ciprofloxacin removal from wastewater. Process Saf. Environ. Prot. 147, 392–404 (2021). https://doi.org/10.1016/j.psep.2020.09.061

    Article  Google Scholar 

  68. Huang, T.; Chen, J.; Wang, Z.; Guo, X.; Crittenden, J.C.: Excellent performance of cobalt-impregnated activated carbon in peroxymonosulfate activation for acid orange 7 oxidation. Environ. Sci. Pollut. Res. 24(10), 9651–9661 (2017). https://doi.org/10.1007/s11356-017-8648-7

    Article  Google Scholar 

  69. Chen, S.; Liu, X.; Gao, S.; Chen, Y.; Rao, L.; Yao, Y.; Wu, Z.: CuCo2O4 supported on activated carbon as a novel heterogeneous catalyst with enhanced peroxymonosulfate activity for efficient removal of organic pollutants. Environ. Res. 183, 109245–109245 (2020). https://doi.org/10.1016/j.envres.2020.109245

    Article  Google Scholar 

  70. Erdem, H.; Erdem, M.: Synthesis and characterization of a novel activated carbon–supported cobalt catalyst from biomass mixture for tetracycline degradation via persulfate activation. Biomass Convers. Biorefinery (2020). https://doi.org/10.1007/s13399-020-00963-z

    Article  Google Scholar 

  71. Luo, J.; Bo, S.; Qin, Y.; An, Q.; Xiao, Z.; Zhai, S.: Transforming goat manure into surface-loaded cobalt/biochar as PMS activator for highly efficient ciprofloxacin degradation. Chem. Eng. J. 395, 125063 (2020). https://doi.org/10.1016/j.cej.2020.125063

    Article  Google Scholar 

  72. Liu, F.; Yi, P.; Wang, X.; Gao, H.; Zhang, H.: Degradation of acid orange 7 by an ultrasound/ZnO-GAC/persulfate process. Sep. Purif. Technol. 194, 181–187 (2018). https://doi.org/10.1016/j.seppur.2017.10.072

    Article  Google Scholar 

  73. Cai, C.; Liu, J.; Zhang, Z.; Zheng, Y.; Zhang, H.: Visible light enhanced heterogeneous photo-degradation of orange II by zinc ferrite (ZnFe2O4) catalyst with the assistance of persulfate. Sep. Purif. Technol. 165, 42–52 (2016). https://doi.org/10.1016/j.seppur.2016.03.026

    Article  Google Scholar 

  74. Fan, Y.; Ji, Y.; Zheng, G.; Lu, J.; Kong, D.; Yin, X.; Zhou, Q.: Degradation of atrazine in heterogeneous Co3O4 activated peroxymonosulfate oxidation process: kinetics, mechanisms, and reaction pathways. Chem. Eng. J. 330, 831–839 (2017). https://doi.org/10.1016/j.cej.2017.08.020

    Article  Google Scholar 

  75. Zheng, H.; Bao, J.; Huang, Y.; Xiang, L.; Faheem; Ren, B.; Du, J.; Nadagouda, M.N.; Dionysiou, D.D.: Efficient degradation of atrazine with porous sulfurized as catalyst for peroxymonosulfate activation. Appl. Catal. B: Environ. 259, 118056–118056 (2019). https://doi.org/10.1016/j.apcatb.2019.118056

    Article  Google Scholar 

  76. Xu, X.; Zong, S.; Chen, W.; Liu, D.: Comparative study of Bisphenol A degradation via heterogeneously catalyzed H2O2 and persulfate: Reactivity, products, stability and mechanism. Chem. Eng. J. 369, 470–479 (2019). https://doi.org/10.1016/j.cej.2019.03.099

    Article  Google Scholar 

  77. Wang, Q.; Shao, Y.; Gao, N.; Chu, W.; Chen, J.; Lu, X.; Zhu, Y.; An, N.: Activation of peroxymonosulfate by Al2O3-based CoFe2O4 for the degradation of sulfachloropyridazine sodium: kinetics and mechanism. Sep. Purif. Technol. 189, 176–185 (2017). https://doi.org/10.1016/j.seppur.2017.07.046

    Article  Google Scholar 

  78. Hu, L.; Wang, P.; Zhang, G.; Liu, G.; Li, Y.; Shen, T.; Crittenden, J.C.: Enhanced persulfate oxidation of organic pollutants and removal of total organic carbons using natural magnetite and microwave irradiation. Chem. Eng. J. 383, 123140–123140 (2020). https://doi.org/10.1016/j.cej.2019.123140

    Article  Google Scholar 

  79. Xu, X.; Chen, W.; Zong, S.; Ren, X.; Liu, D.: Atrazine degradation using Fe3O4-sepiolite catalyzed persulfate: reactivity, mechanism and stability. J. Hazard. Mater. 377, 62–69 (2019). https://doi.org/10.1016/j.jhazmat.2019.05.029

    Article  Google Scholar 

  80. Anipsitakis, G.P.; Dionysiou, D.D.: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ. Sci. Technol. 37(20), 4790–4797 (2003). https://doi.org/10.1021/es0263792

    Article  Google Scholar 

  81. Vergili, I.; Golebatmaz, U.; Kaya, Y.; Gönder, Z.B.; Hasar, H.; Yilmaz, G.: Performance and microbial shift during acidification of a real pharmaceutical wastewater by using an anaerobic sequencing batch reactor (AnSBR). J. Environ. Manage. 212, 186–197 (2018). https://doi.org/10.1016/j.jenvman.2018.01.058

    Article  Google Scholar 

  82. Nguyen, V.-T.; Nguyen, T.-B.; Chen, C.-W.; Hung, C.-M.; Huang, C.P.; Dong, C.-D.: Cobalt-impregnated biochar (Co-SCG) for heterogeneous activation of peroxymonosulfate for removal of tetracycline in water. Biores. Technol. 292, 121954–121954 (2019). https://doi.org/10.1016/j.biortech.2019.121954

    Article  Google Scholar 

  83. Xu, M.; Li, J.; Yan, Y.; Zhao, X.; Yan, J.; Zhang, Y.; Lai, B.; Chen, X.; Song, L.: Catalytic degradation of sulfamethoxazole through peroxymonosulfate activated with expanded graphite loaded CoFe2O4 particles. Chem. Eng. J. 369, 403–413 (2019). https://doi.org/10.1016/j.cej.2019.03.075

    Article  Google Scholar 

  84. Khan, N.A.; Najam, T.; Shah, S.S.A.; Hussain, E.; Ali, H.; Hussain, S.; Shaheen, A.; Ahmad, K.; Ashfaq, M.: Development of Mn-PBA on GO sheets for adsorptive removal of ciprofloxacin from water: kinetics, isothermal, thermodynamic and mechanistic studies. Mater. Chem. Phys. 245, 122737 (2020). https://doi.org/10.1016/j.matchemphys.2020.122737

    Article  Google Scholar 

  85. Ma, J.; Xiong, Y.; Dai, X.; Yu, F.: Coadsorption behavior and mechanism of ciprofloxacin and Cu(II) on graphene hydrogel wetted surface. Chem. Eng. J. 380, 122387 (2020). https://doi.org/10.1016/j.cej.2019.122387

    Article  Google Scholar 

  86. Deng, J.; Cheng, Y.-Q.; Lu, Y.-A.; Crittenden, J.C.; Zhou, S.-Q.; Gao, N.-Y.; Li, J.: Mesoporous manganese Cobaltite nanocages as effective and reusable heterogeneous peroxymonosulfate activators for Carbamazepine degradation. Chem. Eng. J. 330, 505–517 (2017). https://doi.org/10.1016/j.cej.2017.07.149

    Article  Google Scholar 

  87. Liang, C.; Su, H.-W.: Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind. Eng. Chem. Res. 48(11), 5558–5562 (2009). https://doi.org/10.1021/ie9002848

    Article  Google Scholar 

  88. Park, C.M.; Heo, J.; Wang, D.; Su, C.; Yoon, Y.: Heterogeneous activation of persulfate by reduced graphene oxide–elemental silver/magnetite nanohybrids for the oxidative degradation of pharmaceuticals and endocrine disrupting compounds in water. Appl. Catal. B 225, 91–99 (2018). https://doi.org/10.1016/j.apcatb.2017.11.058

    Article  Google Scholar 

  89. Guerra-Rodríguez, S.; Rodríguez, E.; Singh, D.N.; Rodríguez-Chueca, J.: Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: a review. Water (2018). https://doi.org/10.3390/w10121828

    Article  Google Scholar 

  90. Zhu, S.; Wang, W.; Xu, Y.; Zhu, Z.; Liu, Z.; Cui, F.: Iron sludge-derived magnetic Fe0/Fe3C catalyst for oxidation of ciprofloxacin via peroxymonosulfate activation. Chem. Eng. J. 365, 99–110 (2019). https://doi.org/10.1016/j.cej.2019.02.011

    Article  Google Scholar 

  91. Pi, Z.; Li, X.; Wang, D.; Xu, Q.; Tao, Z.; Huang, X.; Yao, F.; Wu, Y.; He, L.; Yang, Q.: Persulfate activation by oxidation biochar supported magnetite particles for tetracycline removal: performance and degradation pathway. J. Clean. Prod. 235, 1103–1115 (2019). https://doi.org/10.1016/j.jclepro.2019.07.037

    Article  Google Scholar 

  92. Niu, L.; Zhang, G.; Xian, G.; Ren, Z.; Wei, T.; Li, Q.; Zhang, Y.; Zou, Z.: Tetracycline degradation by persulfate activated with magnetic γ-Fe2O3/CeO2 catalyst: performance, activation mechanism and degradation pathway. Sep. Purif. Technol. 259, 118156 (2021). https://doi.org/10.1016/j.seppur.2020.118156

    Article  Google Scholar 

  93. Gao, Y.; Cong, S.; Yu, H.; Zou, D.: Investigation on microwave absorbing properties of 3D C@ZnCo2O4 as a highly active heterogenous catalyst and the degradation of ciprofloxacin by activated persulfate process. Sep. Purif. Technol. 262, 118330 (2021). https://doi.org/10.1016/j.seppur.2021.118330

    Article  Google Scholar 

  94. Vogel, A.I.; Svehla, G.: Textbook of macro and semimicro qualitative inorganic analysis. Longman Scientific & Technical (1987)

  95. Baradaran, S.; Sadeghi, M.T.: Coomassie brilliant blue (CBB) degradation using hydrodynamic cavitation, hydrogen peroxide and activated persulfate (HC-H2O2-KPS) combined process. Chem. Eng. Process. Process Intensif. 145, 107674 (2019). https://doi.org/10.1016/j.cep.2019.107674

    Article  Google Scholar 

  96. Wang, X.; Jia, J.; Wang, Y.: Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline. Chem. Eng. J. 315, 274–282 (2017). https://doi.org/10.1016/j.cej.2017.01.011

    Article  Google Scholar 

  97. He, Y.; Grieser, F.; Ashokkumar, M.: Kinetics and mechanism for the sonophotocatalytic degradation of p-chlorobenzoic acid. J. Phys. Chem. A 115(24), 6582–6588 (2011). https://doi.org/10.1021/jp203518s

    Article  Google Scholar 

  98. He, Q.; Xie, C.; Gan, D.; Xiao, C.: The efficient degradation of organic pollutants in an aqueous environment under visible light irradiation by persulfate catalytically activated with kaolin-Fe2O3. RSC Adv. 10(1), 43–52 (2020). https://doi.org/10.1039/C9RA09253F

    Article  Google Scholar 

  99. Tang, H.; Dai, Z.; Xie, X.; Wen, Z.; Chen, R.: Promotion of peroxydisulfate activation over Cu0.84Bi2.08O4 for visible light induced photodegradation of ciprofloxacin in water matrixv. Chem. Eng. J. 356, 472–482 (2019). https://doi.org/10.1016/j.cej.2018.09.066

    Article  Google Scholar 

  100. Liu, M.; Zhang, L.; Xi, B.; Yu, S.; Hu, X.; Hou, L.: Degradation of ciprofloxacin by TiO2/Fe2O3/zeolite catalyst-activated persulfate under visible LED light irradiation. RSC Adv. 7(81), 51512–51520 (2017). https://doi.org/10.1039/C7RA08475G

    Article  Google Scholar 

  101. Milh, H.; Yu, X.; Cabooter, D.; Dewil, R.: Degradation of ciprofloxacin using UV-based advanced removal processes: comparison of persulfate-based advanced oxidation and sulfite-based advanced reduction processes. Sci. Total Environ. 764, 144510 (2021). https://doi.org/10.1016/j.scitotenv.2020.144510

    Article  Google Scholar 

  102. Lin, C.-C.; Wu, M.-S.: Degradation of ciprofloxacin by UV/S2O82− process in a large photoreactor. J. Photochem. Photobiol., A 285, 1–6 (2014). https://doi.org/10.1016/j.jphotochem.2014.04.002

    Article  Google Scholar 

  103. Igwegbe, C.A.; Ahmadi, S.; Rahdar, S.; Ramazani, A.; Mollazehi, A.R.: Efficiency comparison of advanced oxidation processes for ciprofloxacin removal from aqueous solutions: sonochemical, sono-nano-chemical and sono-nano-chemical/persulfate processes. Environ. Eng. Res. 25(2), 178–185 (2020). https://doi.org/10.4491/eer.2018.058

    Article  Google Scholar 

  104. Ahmadi, S.; Osagie, C.; Rahdar, S.; Khan, N.A.; Ahmed, S.; Hajini, H.: Efficacy of persulfate-based advanced oxidation process (US/PS/Fe3O4) for ciprofloxacin removal from aqueous solutions. Appl. Water Sci. 10(8), 187 (2020). https://doi.org/10.1007/s13201-020-01271-7

    Article  Google Scholar 

  105. Jiang, C.; Ji, Y.; Shi, Y.; Chen, J.; Cai, T.: Sulfate radical-based oxidation of fluoroquinolone antibiotics: kinetics, mechanisms and effects of natural water matrices. Water Res. 106, 507–517 (2016). https://doi.org/10.1016/j.watres.2016.10.025

    Article  Google Scholar 

  106. Malakootian, M.; Ahmadian, M.: Ciprofloxacin removal by electro-activated persulfate in aqueous solution using iron electrodes. Appl. Water Sci. 9(5), 140 (2019). https://doi.org/10.1007/s13201-019-1024-7

    Article  Google Scholar 

  107. Zhao, D.; Armutlulu, A.; Chen, Q.; Xie, R.: Enhanced ciprofloxacin degradation by electrochemical activation of persulfate using iron decorated carbon membrane cathode: promoting direct single electron transfer to produce 1O2. Chem. Eng. J. 437, 135264 (2022). https://doi.org/10.1016/j.cej.2022.135264

    Article  Google Scholar 

  108. Ma, Y.; Wang, Z.; Li, J.; Song, B.; Liu, S.: Electrochemical-assisted ultraviolet light coupled peroxodisulfate system to degrade ciprofloxacin in water: kinetics, mechanism and pathways. Chemosphere 295, 133838 (2022). https://doi.org/10.1016/j.chemosphere.2022.133838

    Article  Google Scholar 

  109. Shah, N.S.; Ali Khan, J.; Sayed, M.; Ul Haq Khan, Z.; Sajid Ali, H.; Murtaza, B.; Khan, H.M.; Imran, M.; Muhammad, N.: Hydroxyl and sulfate radical mediated degradation of ciprofloxacin using nano zerovalent manganese catalyzed S2O82−. Chem. Eng. J. 356, 199–209 (2019). https://doi.org/10.1016/j.cej.2018.09.009

    Article  Google Scholar 

  110. Li, C.; Lin, H.; Armutlulu, A.; Xie, R.; Zhang, Y.; Meng, X.: Hydroxylamine-assisted catalytic degradation of ciprofloxacin in ferrate/persulfate system. Chem. Eng. J. 360, 612–620 (2019). https://doi.org/10.1016/j.cej.2018.11.218

    Article  Google Scholar 

  111. Nekouei, F.; Nekouei, S.; Noorizadeh, H.: Enhanced adsorption and catalytic oxidation of ciprofloxacin by an Ag/AgCl@N-doped activated carbon composite. J. Phys. Chem. Solids 114, 36–44 (2018). https://doi.org/10.1016/j.jpcs.2017.11.002

    Article  Google Scholar 

  112. Hoa, N.T.; Nguyen, H.; Nguyen, L.; Do, K.N.; Vu, L.D.: Efficient removal of ciprofloxacin in aqueous solutions by zero-valent metal-activated persulfate oxidation: a comparative study. J Water Process Eng. 35, 101199 (2020). https://doi.org/10.1016/j.jwpe.2020.101199

    Article  Google Scholar 

  113. Gao, J.; Han, D.; Xu, Y.; Liu, Y.; Shang, J.: Persulfate activation by sulfide-modified nanoscale iron supported by biochar (S-nZVI/BC) for degradation of ciprofloxacin. Sep. Purif. Technol. 235, 116202 (2020). https://doi.org/10.1016/j.seppur.2019.116202

    Article  Google Scholar 

  114. Wang, C.; Gao, S.; Zhu, J.; Xia, X.; Wang, M.; Xiong, Y.: Enhanced activation of peroxydisulfate by strontium modified BiFeO3perovskite for ciprofloxacin degradation. J. Environ. Sci. 99, 249–259 (2021). https://doi.org/10.1016/j.jes.2020.04.026

    Article  Google Scholar 

  115. Jiang, S.; Zhu, J.; Wang, Z.; Ge, M.; Zhu, H.; Jiang, R.; Zong, E.; Guan, Y.: Efficiency and mechanism of ciprofloxacin hydrochloride degradation in wastewater by Fe3o4/Na2S2O8. Ozone Sci. Eng. 40(6), 457–464 (2018). https://doi.org/10.1080/01919512.2018.1469969

    Article  Google Scholar 

  116. Wang, B.; Li, S.; Wang, H.; Yao, S.: Insight into the performance and mechanism of magnetic Ni0.5Cu0.5Fe2O4 in activating peroxydisulfate for ciprofloxacin degradation. Water Sci. Technol. 85(4), 1235–1249 (2022). https://doi.org/10.2166/wst.2022.043

    Article  Google Scholar 

  117. Armstrong, D.A.; Huie, R.E.; Koppenol, W.H.; Lymar, S.V.; Merényi, G.; Neta, P.; Ruscic, B.; Stanbury, D.M.; Steenken, S.; Wardman, P.: Standard electrode potentials involving radicals in aqueous solution: inorganic radicals (IUPAC technical report). Pure Appl. Chem. 87(11–12), 1139–1150 (2015). https://doi.org/10.1515/pac-2014-0502

    Article  Google Scholar 

  118. Anipsitakis, G.P.; Dionysiou, D.D.: Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 38(13), 3705–3712 (2004). https://doi.org/10.1021/es035121o

    Article  Google Scholar 

  119. Ji, Y.; Fan, Y.; Liu, K.; Kong, D.; Lu, J.: Thermo activated persulfate oxidation of antibiotic sulfamethoxazole and structurally related compounds. Water Res. 87, 1–9 (2015). https://doi.org/10.1016/j.watres.2015.09.005

    Article  Google Scholar 

  120. Feng, Y.; Song, Q.; Lv, W.; Liu, G.: Degradation of ketoprofen by sulfate radical-based advanced oxidation processes: kinetics, mechanisms, and effects of natural water matrices. Chemosphere 189, 643–651 (2017). https://doi.org/10.1016/j.chemosphere.2017.09.109

    Article  Google Scholar 

  121. Tan, C.; Gao, N.; Fu, D.; Deng, J.; Deng, L.: Efficient degradation of paracetamol with nanoscaled magnetic CoFe2O4 and MnFe2O4 as a heterogeneous catalyst of peroxymonosulfate. Sep. Purif. Technol. 175, 47–57 (2017). https://doi.org/10.1016/j.seppur.2016.11.016

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) [Grand Number 117Y300].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatice Erdem.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 247 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdem, H., Erdem, M. Ciprofloxacin Degradation with Persulfate Activated with the Synergistic Effect of the Activated Carbon and Cobalt Dual Catalyst. Arab J Sci Eng 48, 8401–8415 (2023). https://doi.org/10.1007/s13369-022-06907-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06907-1

Keywords

Navigation