Skip to main content
Log in

Formation Resistivity Prediction Using Decision Tree and Random Forest

  • Research Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Formation resistivity (Rt) is a vital property for formation evaluation and calculation of water saturation and hydrocarbon in places. Rt can be estimated using core analysis and well logging. However, these processes are expensive and time-consuming. In addition, due to tool failure, and poor wellbore conditions, part of the well logging records may be missed. Hence, the objective of this paper is to predict the true formation resistivity in complex carbonate sections using decision tree (DT) and Random Forests (RF) machine learning (ML) techniques as a function of available well logging data. A data set of 5500 data points were collected from two vertical wells in carbonate formation. The data includes gamma-ray, bulk density, neutron density, compressional wave transit time, shear transient time, and the corresponding Rt. Data from Well-1 were used to develop the DT and RF models with training to the testing splitting ratio of 70:30. Dataset from Well-2 was used to validate the optimized models. The results showed the capabilities of the ML models to predict the formation resistivity from well-logging data. The correlation coefficient (R) between the actual and the predicted output values and the root mean square error (RMSE) was used to evaluate the models performance. R value for the RF model was found to be 0.99, and 0.98 for the training and the testing stages with a validation R value of 0.94. The RMSE for the developed models was less than 0.38 for training, testing, and validation stages. Using ML to predict the formation resistivity can fill the missing gaps in log tracks and save money by removing resistivity logs running in all offset wells in the same field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

API:

American petroleum institute

ANFIS:

Adaptive network-based fuzzy interference system

ANN:

Artificial neural networks

CGR:

Computed gamma ray

DT:

Decision tree

DTC:

Compressional transient time

DTS:

Shear transient time

FN:

Functional networks

GR:

Gamma ray

ILD:

Induction log deep

ILM:

Induction log medium

LLD:

Deep latero-log

LWD:

Logging while drilling

RMSE:

Root mean squared error

NPHI:

Neutron porosity

R:

Correlation coefficient

RF:

Random forests

RHOB:

Bulk density

RMSE:

Root mean squared error

R t :

True resistivity

R xo :

Flushed zone resistivity

SGR:

Spectral gamma ray

SVM:

Support vector machines

S w :

Water saturation

S xo :

Flushed zone water saturation

w :

Water

xo :

Flushed zone

References

  1. Asquith, G.; Krygowski, D.: Basic Well Log Analysis for Geologists, 2nd edn. The American Association of Petroleum Geologists (2004)

  2. Evenick, J.: Introduction to Well Logs and subsurface maps. PennWell Corp., Nashville (2008)

    Google Scholar 

  3. Serra, O.: Fundamentals of Well-Log Interpretation (1984)

  4. Archie, G.E.: The electrical resistivity log as an aid in determining some reservoir characteristics. SPE Repr. Ser. 146, 9–16 (1942). https://doi.org/10.2118/942054-g

    Article  Google Scholar 

  5. Zhong, H.; He, Y.; Yang, E.; Bi, Y.; Yang, T.: Modeling of microflow during viscoelastic polymer flooding in heterogenous reservoirs of Daqing Oilfield. J. Pet. Sci. Eng. 210, 110091 (2022). https://doi.org/10.1016/J.PETROL.2021.110091

    Article  Google Scholar 

  6. Yang, E.; Fang, Y.; Liu, Y.; Li, Z.; Wu, J.: Research and application of microfoam selective water plugging agent in shallow low-temperature reservoirs. J. Pet. Sci. Eng. 193, 107354 (2020). https://doi.org/10.1016/J.PETROL.2020.107354

    Article  Google Scholar 

  7. Mavko, G.; Mukerji, T.; Dovorkin, J.: The Rock Physics Handbook—Tools for Seismic Analysis of Porous Media, 2nd edn (2009)

  8. Timur, A.: Advances in well logging. J. Pet. Technol. 34, 1181–1185 (1982). https://doi.org/10.2118/10947-pa

    Article  Google Scholar 

  9. Rajabi, M.; Bohloli, B.; Gholampour Ahangar, E.: Intelligent approaches for prediction of compressional, shear and Stoneley wave velocities from conventional well log data: a case study from the Sarvak carbonate reservoir in the Abadan Plain (Southwestern Iran). Comput. Geosci. 36, 647–664 (2010). https://doi.org/10.1016/j.cageo.2009.09.008

    Article  Google Scholar 

  10. Mohaghegh, S.: Virtual-intelligence applications in petroleum engineering: part I—artificial neural networks. J. Pet. Technol. 52, 64–73 (2000). https://doi.org/10.2118/58046-jpt

    Article  Google Scholar 

  11. Elsafi, S.H.: Artificial Neural Networks (ANNs) for flood forecasting at Dongola Station in the River Nile, Sudan. Alex. Eng. J. 53, 655–662 (2014). https://doi.org/10.1016/j.aej.2014.06.010

    Article  Google Scholar 

  12. Doraisamy, H.; Ertekin, T.; Grader, A.S.: Key parameters controlling the performance of neuro-simulation applications in field development. In: Proceedings—SPE Annual Western Regional Meeting, pp. 233–241. Soc Pet Eng (SPE) (1998)

  13. Gamal, H.; Alsaihati, A.; Elkatatny, S.: Predicting the rock sonic logs while drilling by random forest and decision tree-based algorithms. J. Energy Resour. Technol. (2022). https://doi.org/10.1115/1.4051670

    Article  Google Scholar 

  14. Alsaihati, A.; Elkatatny, S.; Gamal, H.: Rate of penetration prediction while drilling vertical complex lithology using an ensemble learning model. J. Pet. Sci. Eng. 208, 109335 (2022). https://doi.org/10.1016/j.petrol.2021.109335

    Article  Google Scholar 

  15. Al-Abdul Jabbar, A.; Elkatatny, S.; Mahmoud, M.; Abdulraheem, A.: Predicting formation tops while drilling using artificial intelligence. In: Society of Petroleum Engineers—SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition 2018, SATS 2018. Society of Petroleum Engineers (2018)

  16. Elkatatny, S.; Mahmoud, M.: Development of new correlations for the oil formation volume factor in oil reservoirs using artificial intelligent white box technique. Petroleum 4, 178–186 (2018). https://doi.org/10.1016/j.petlm.2017.09.009

    Article  Google Scholar 

  17. Gamal, H.; Abdelaal, A.; Elkatatny, S.: Machine learning models for equivalent circulating density prediction from drilling data. ACS Omega 8, acsomega.1c04363 (2021). https://doi.org/10.1021/ACSOMEGA.1C04363

    Article  Google Scholar 

  18. Gamal, H.; Abdelaal, A.; Alsaihati, A.; Elkatatny, S.; Abdulraheem, A.: Artificial Neural Network Model for Predicting the Equivalent Circulating Density from Drilling Parameters (2021)

  19. Gamal, H.; Elkatatny, S.; Alsaihati, A.; Abdulraheem, A.: Intelligent prediction for rock porosity while drilling complex lithology in real time. Comput. Intell. Neurosci. (2021). https://doi.org/10.1155/2021/9960478

    Article  Google Scholar 

  20. Gowida, A.; Elkatatny, S.; Abdulraheem, A.: Application of artificial neural network to predict formation bulk density while drilling. Petrophysics 60, 660–674 (2019). https://doi.org/10.30632/pjv60n5-2019a9

    Article  Google Scholar 

  21. Zazoun, R.S.: Fracture density estimation from core and conventional well logs data using artificial neural networks: the Cambro-Ordovician reservoir of Mesdar oil field, Algeria. J. Afr. Earth Sci. 83, 55–73 (2013). https://doi.org/10.1016/j.jafrearsci.2013.03.003

    Article  Google Scholar 

  22. Siddig, O.; Gamal, H.; Elkatatny, S.; Abdulraheem, A.: Real-time prediction of Poisson’s ratio from drilling parameters using machine learning tools. Sci. Rep. 11, 1–13 (2021). https://doi.org/10.1038/s41598-021-92082-6

    Article  Google Scholar 

  23. Siddig, O.; Gamal, H.; Elkatatny, S.; Abdulraheem, A.: Applying different artificial intelligence techniques in dynamic Poisson’s ratio prediction using drilling parameters. J. Energy Resour. Technol. (2022). https://doi.org/10.1115/1.4052185

    Article  Google Scholar 

  24. Siddig, O.M.; Al-Afnan, S.F.; Elkatatny, S.M.; Abdulraheem, A.: Drilling data-based approach to build a continuous static elastic moduli profile utilizing artificial intelligence techniques. J. Energy Resour. Technol. (2022). https://doi.org/10.1115/1.4050960

    Article  Google Scholar 

  25. Abdelaal, A.; Elkatatny, S.; Abdulraheem, A.: Data-driven modeling approach for pore pressure gradient prediction while drilling from drilling parameters. ACS Omega (2021). https://doi.org/10.1021/acsomega.1c01340

    Article  Google Scholar 

  26. Abdelaal, A.; Elkatatny, S.; Abdulraheem, A.: Formation Pressure Prediction from Mechanical and Hydraulic Drilling Data Using Artificial Neural Networks (2021)

  27. Azimi, H.; Shiri, H.; Malta, E.R.: A non-tuned machine learning method to simulate ice-seabed interaction process in clay. J. Pipeline Sci. Eng. 1, 379–394 (2021). https://doi.org/10.1016/J.JPSE.2021.08.005

    Article  Google Scholar 

  28. Moazzeni, A.; Haffar, M.A.: Artificial intelligence for lithology identification through real-time drilling data. J. Earth Sci. Clim. Change 06, 1–4 (2015). https://doi.org/10.4172/2157-7617.1000265

    Article  Google Scholar 

  29. Salehi, M.M.; Rahmati, M.; Karimnezhad, M.; Omidvar, P.: Estimation of the non records logs from existing logs using artificial neural networks. Egypt. J. Pet. 26, 957–968 (2017). https://doi.org/10.1016/j.ejpe.2016.11.002

    Article  Google Scholar 

  30. Sbiga, H.; Mousa, N.: Prediction of true resistivity and resistivity index using neural networks with different combinations of wireline logs. In: Society of Petroleum Engineers—SPE North Africa Technical Conference and Exhibition 2015, NATC 2015, pp. 1105–1122. Society of Petroleum Engineers (2015)

  31. Ważny, J.; Stefaniuk, M.; Cygal, A.: Estimation of electrical resistivity using artificial neural networks: a case study from Lublin Basin, SE Poland. Acta Geophys. 69, 631–642 (2021). https://doi.org/10.1007/s11600-021-00554-0

    Article  Google Scholar 

  32. Darling, T.: Well logging and formation evaluation. Well Logging Form. Eval. (2005). https://doi.org/10.1016/B978-0-7506-7883-4.X5000-1

    Article  Google Scholar 

  33. Thunder, M.; Moore, D.S.; McCabe, G.P.: Introduction to the practice of statistics. Math. Gaz. 79, 252 (1995). https://doi.org/10.2307/3620137

    Article  Google Scholar 

Download references

Funding

No external fund for this research and the authors would like to thank KFUPM for giving permission to publish this work.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Salaheldin Elkatatny.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, A.F., Abdelaal, A. & Elkatatny, S. Formation Resistivity Prediction Using Decision Tree and Random Forest. Arab J Sci Eng 47, 12183–12191 (2022). https://doi.org/10.1007/s13369-022-06900-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06900-8

Keywords

Navigation