Skip to main content
Log in

Parametric Evaluation of Condensate Water Yield from Plain Finned Tube Heat Exchangers in Atmospheric Water Generation

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This article presents the moisture harvesting capability of plain finned tube heat exchangers, used in active atmospheric water generation systems. The study reviews the data and correlations of heat transfer for such heat exchangers in open literature and embed suitable correlations for predicting the yield of water when exposed to humid air. Set of results are obtained at the inlet and exit of an experimental setup at varying inlet conditions at constant air flowrate and heat exchanger geometry. The heat exchanger is analyzed using a characteristic unit cell where computational fluid dynamics is used to predict temperature drop across it, using COMSOL Multiphysics, whereas the repetitive incremental routines have been carried out using MATLAB. The flowchart is verified by the experimental data. The water product as a result of cooling of the heat exchanger, often considered parasitic for effectiveness of the heat exchanger in sensible cooling applications, is given prime importance, which increases the heat exchanger’s water harvesting capability. Psychrometric conditions at the inlet under an interval of dry bulb temperature of 20–40 °C and relative humidity of 20–70%, with rows ranging 1 through 4, fin density of 8, 10, 12 and 14 fins per inch and forced convection corresponding to 100 through 2000 cfm, have been analyzed. The results are specified as plots of various variables against the yield of water on a per unit frontal area basis. The increase in water yield is, respectively, highest and lowest for increasing number of rows and increasing fin density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

\(A\) :

Total airside area of heat transfer, \({\mathrm{m}}^{2}\)

\({A}_{c}\) :

Characteristic area of the heat exchanger, \({\mathrm{m}}^{2}\)

\({A}_{fr}\) :

Frontal area of the heat exchanger, \({\mathrm{m}}^{2}\)

\({d}_{c}\) :

Collar diameter, \(\mathrm{m}\)

\({d}_{o}\) :

Tube outer diameter, \(\mathrm{m}\)

\({d}_{h}\) :

Hydraulic diameter, \(\mathrm{m}\)

\(h\) :

Heat transfer coefficient, \(\mathrm{W}/{\mathrm{m}}^{2}\mathrm{K}\)

\(H\) :

Height of the heat exchanger, \(\mathrm{m}\)

\({i}_{fg}\) :

Latent heat of vaporization of water, \(\mathrm{kJ}/\mathrm{kg}\)

\(k\) :

Conductivity of air at bulk, \(\mathrm{W}/\mathrm{mK}\)

\(L\) :

Length of the heat exchanger, \(\mathrm{m}\)

\({\dot{m}}_{a}\) :

Mass flow rate of air, \(\mathrm{kg}/\mathrm{s}\)

\({\dot{m}}_{w}\) :

Mass flow rate of water, \(\mathrm{kg}/\mathrm{s}\)

\({N}_{f}\) :

Number of fins per length, \({\mathrm{m}}^{-1}\)

\({N}_{r}\) :

Number of rows of heat exchanger

\({N}_{t}\) :

Number of tubes per row of heat exchanger

\(Nu\) :

Nusselt number

\(Pr\) :

Prandtl number

\(Q\) :

Rate of heat transfer, \(\mathrm{W}\)

\(Re\) :

Reynolds number

\(\mathcal{R}\) :

Correlated ratio

\({s}_{f}\) :

Fin pitch, \(\mathrm{m}\)

\(\mathrm{SHR}\) :

Sensible heat ratio

\({s}_{l}\) :

Longitudinal pitch, \(\mathrm{m}\)

\({s}_{t}\) :

Transverse pitch, \(\mathrm{m}\)

\({s}_{v}\) :

Specific surface, \({\mathrm{m}}^{2}/{\mathrm{m}}^{3}\)

\(T\) :

Temperature, °C

\({t}_{f}\) :

Fin thickness, \(\mathrm{m}\)

\(u\) :

Frontal velocity, \(\mathrm{m}/\mathrm{s}\)

\(V\) :

Volume of heat exchanger, \({\mathrm{m}}^{3}\)

\(\dot{V}\) :

Volume rate of air, \({\mathrm{m}}^{3}/\mathrm{s}\)

\({V}_{c}\) :

Characteristic Volume of the heat exchanger, \({\mathrm{m}}^{3}\)

\({V}_{c,f}\) :

Free characteristic volume, \({\mathrm{m}}^{3}\)

\(W\) :

Width of the heat exchanger, \(\mathrm{m}\)

\(\varepsilon\) :

Volumetric porosity, \({\mathrm{m}}^{3}/{\mathrm{m}}^{3}\)

\(\mu\) :

Dynamic viscosity of air, \(\mathrm{Pa}\cdot \mathrm{s}\)

\(\rho\) :

Density of air, \(\mathrm{kg}/{\mathrm{m}}^{3}\)

\(\upsilon\) :

Characteristic velocity, \(\mathrm{m}/\mathrm{s}\)

\(\omega\) :

Specific humidity, \(\mathrm{kg}/\mathrm{kg}(\mathrm{dry air})\)

\({\Pi }_{1},{\Pi }_{2},{\Pi }_{3}, {\Pi }_{4},{\Pi }_{5}\) :

Dimensionless probable Pi-terms for correlation

\(\mathrm{ADP}\) :

Apparatus dewpoint

\(\mathrm{in}\) :

Inlet of heat exchanger

\(\mathrm{lat}\) :

Latent

\(\mathrm{out}\) :

Outlet of heat exchanger

\(\mathrm{pred}\) :

Predicted

\(\mathrm{sens}\) :

Sensible

\(\mathrm{total}\) :

Total of heat exchanger

\(\infty\) :

Average bulk fluid

AWG:

Atmospheric water generator

DBT:

Dry bulb temperature

FPI:

Fins per inch

HX:

Heat exchanger

FTHE:

Finned-tube heat exchanger

PCM:

Phase change material

PFTHE:

Plain finned tube heat exchanger

RH:

Relative humidity

References

  1. Shepherd, D.G.: Performance of one-row tube coil with thin plate fins, low velocity forced convection. ASHRAE Trans. 62, 505–530 (1956)

    Google Scholar 

  2. Tu, Y.; Wang, R.; Zhang, Y.; Wang, J.: Progress and expectation of atmospheric water harvesting. Joule 2, 1452–1475 (2018). https://doi.org/10.1016/j.joule.2018.07.015

    Article  Google Scholar 

  3. Wang, C.; Hseih, Y.; Lin, Y.: Performance of plate finned tube heat exchangers under dehumidifying conditions. J. Heat Transf. 119, 109–117 (1997)

    Article  Google Scholar 

  4. Halici, F.; Taymaz, I.: Experimental study of the airside performance of tube row spacing in finned tube heat exchangers. Heat Mass Transf. 42, 817–822 (2006). https://doi.org/10.1007/s00231-005-0042-1

    Article  Google Scholar 

  5. Bourabaa, A.; Saighi, M.; Belal, I.: The influence of the inlet conditions on the air side heat transfer performance of plain finned evaporator. World Acad. Sci. Eng. Technol. Int. J. Phys. Math. Sci. 5, 1667–1670 (2011)

    Google Scholar 

  6. Hong, K.T.; Webb, R.: Calculation of fin efficiency for wet and dry fins. HVAC&R Res. 2, 27–41 (1996). https://doi.org/10.1080/10789669.1996.10391331

    Article  Google Scholar 

  7. Eckels, P.W.; Rabas, T.J.: Dehumidification: on the correlation of wet and dry transport processes in plate finned-tube heat exchangers. J. Heat Transfer. 109, 575–582 (1987)

    Article  Google Scholar 

  8. Arslan, G.: Heat transfer performance analysis of dehumidifying fin and tube heat exchangers. JESTECH 16, 23–31 (2013)

    Google Scholar 

  9. Starace, G.; Fiorentino, M.; Meleleo, B.; Risolo, C.: The hybrid method applied to the plate-finned tube evaporator geometry. Int. J. Refrig. 88, 67–77 (2018). https://doi.org/10.1016/j.ijrefrig.2017.12.007

    Article  Google Scholar 

  10. Jacimovic, B.; Genic, S.; Lelea, D.: Calculation of the heat transfer coefficient for laminar flow in pipes in practical engineering applications. Heat Transf. Eng. 39, 1790–1796 (2018). https://doi.org/10.1080/01457632.2017.1388949

    Article  Google Scholar 

  11. McQuiston, F.C.; Tree, D.R.: Heat transfer and flow friction data for two fin-tube surfaces. J. Heat Transf. 93, 249–250 (1971)

    Article  Google Scholar 

  12. Siddiqui, M.A.; Azam, M.A.; Khan, M.M.; Iqbal, S.; Khan, M.U.; Raffat, Y.: Current trends on extraction of water from air: an alternative solution to water supply. Int. J. Environ. Sci. Technol. 2022, 1–28 (2022). https://doi.org/10.1007/S13762-022-03965-8

    Article  Google Scholar 

  13. Turkyilmazoglu, M.: Cooling of particulate solids and fluid in a moving bed heat exchanger. J. Heat Transf. (2019). https://doi.org/10.1115/1.4044590/975438

    Article  Google Scholar 

  14. Rich, D.G.: The effect of fin spacing on the heat transfer and friction performance of multirow, smooth plate fin tube heat exchangers. ASHRAE Trans. 79, 137–145 (1973)

    Google Scholar 

  15. Rich, D.G.: The effect the number of tube row on heat transfer performance of smooth plate fin tube heat exchanger. ASHRAE Trans. 81, 307–317 (1975)

    Google Scholar 

  16. McQuiston, F.C.: Fin efficiency with combined heat and mass transfer. ASHRAE Trans. 81, 350–355 (1975)

    Google Scholar 

  17. McQuiston, F.C.: Heat mass and momentum transfer data for five plate-fin tube transfer surface. ASHRAE Trans. 84, 266–293 (1978)

    Google Scholar 

  18. McQuiston, F.C.: Correlation of heat, mass, and momentum transport coefficients for plate-fin-tube heat transfer surfaces with staggered tubes. ASHRAE Trans. 84, 294–309 (1978)

    Google Scholar 

  19. McQuiston, F.C.; Parker, J.D.: Heating, Ventilating, and Air Conditioning, 4th edn. WIley, New York (1994)

    Google Scholar 

  20. ARI Standard 410–72 (1972) Standard for Forced Circulation Air Cooling and Air Heating Coils

  21. Eckels PW (1977) Contact Conductance of Mechanically Expanded Plate Finned-Tube Heat Exchangers. ASME Pap. No. 77-HT-24

  22. Kandlikar, S.G.; Shah, R.K.; Kraus, A.D.; Metzger, D.: Thermal Design Theory for Compact Evaporators. In: Compact Heat Exchangers, pp. 245–286. Hemisphere Publishing Corp, New York, NY (1990)

    Google Scholar 

  23. Schmidt TE (1945) La Production Calorifique des Surfaces Munies D’ailettes. In: Bulletin De L’Institut International Du Froid. p Annexure G-5

  24. Turkyilmazoglu, M.: Stretching/shrinking longitudinal fins of rectangular profile and heat transfer. Energy Convers. Manag. 91, 199–203 (2015). https://doi.org/10.1016/J.ENCONMAN.2014.12.007

    Article  Google Scholar 

  25. Threlkeld, J.L.: Thermal Environmental Engineering. Prentice Hall Inc., New York, NY (1970)

    Google Scholar 

  26. Bump, T.R.: Average temperatures in simple heat exchangers. J. Heat Transf. 85, 182–183 (1963). https://doi.org/10.1115/1.3686051

    Article  Google Scholar 

  27. Myers, R.J.: The Effect of Dehumidification on the Air-Side Heat Transfer Coefficient for a Finned-Tube Coil. University of Minnesota, Minneapolis (1967)

    Google Scholar 

  28. Wang, C.-C.; Lin, Y.-T.; Lee, C.-J.: An airside correlation for plain fin-and-tube heat exchnagers in wet conditions. Int. J. Heat Mass Transf. 43, 1867–1872 (2000)

    Article  Google Scholar 

  29. Chuah, Y.K.; Hung, C.C.; Tseng, P.C.: Experiments on the dehumidification performance of a finned tube heat exchanger. HVAC&R Res 4, 167–178 (1998). https://doi.org/10.1080/10789669.1998.10391398

    Article  Google Scholar 

  30. Halıcı, F.; Taymaz, İ; Gündüz, M.: The effect of the number of tube rows on heat, mass and momentum transfer in flat-plate finned tube heat exchangers. Energy 26, 963–972 (2001). https://doi.org/10.1016/S0360-5442(01)00048-2

    Article  Google Scholar 

  31. Liu, Y.-C.; Wongwises, S.; Chang, W.-J.; Wang, C.-C.: Airside performance of fin-and-tube heat exchangers in dehumidifying conditions – data with larger diameter. Int. J. Heat Mass Transf. 53, 1603–1608 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.015

    Article  Google Scholar 

  32. Liang, S.Y.; Wong, T.N.: Experimental validation of model predictions on evaporator coils with an emphasis on fin efficiency. Int. J. Therm. Sci. 49, 187–195 (2010). https://doi.org/10.1016/j.ijthermalsci.2009.08.004

    Article  Google Scholar 

  33. Gray, D.L.; Webb, R.L.: Heat transfer and friction correlations for plate finnedtube heat exchangers having plain fins. Proc. Eight Int. Heat Transf. Conf. 6, 2745–2750 (1986)

    Article  Google Scholar 

  34. Bourabaa, A.; Saighi, M.; El Metenani, S.: Heat transfer characteristics of fin-and-tube heat exchanger under condensing conditions. World Acad. Sci. Eng. Technol. Int. J. Math. Comput. Phys. Electr. Comput. Eng. 6, 420–423 (2012)

    Google Scholar 

  35. Kim, N.H.: Heat transfer and pressure drop characteristics of plain fin-and-tube heat exchangers having 5.0 mm tubes under dehumidifying condition. Int. J. Air-Condition. Refrig. (2015). https://doi.org/10.1142/S2010132515500169

    Article  Google Scholar 

  36. Ahmad, R.; Mustafa, M.; Turkyilmazoglu, M.: Buoyancy effects on nanofluid flow past a convectively heated vertical Riga-plate: a numerical study. Int. J. Heat Mass Transf. 111, 827–835 (2017). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2017.04.046

    Article  Google Scholar 

  37. Otović, M.; Mihailović, M.; Genić, S.; Jaćimović, B.; Milovančević, U.; Marković, S.: Reconsideration of data and correlations for plate finned-tube heat exchangers. Heat Mass Transf. 54, 2987–2994 (2018). https://doi.org/10.1007/s00231-018-2328-0

    Article  Google Scholar 

  38. Mihailović, M.; Milovančević, U.; Genić, S.; Jaćimović, B.; Otović, M.; Kolendić, P.: Air side heat transfer coefficient in plate finned tube heat exchangers. Exp. Heat Transf. 33, 388–399 (2020). https://doi.org/10.1080/08916152.2019.1656298

    Article  Google Scholar 

Download references

Funding

The research received no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mubashir Siddiqui.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Appendix

Appendix

The use of linear regression with weighted least squares and bisquare robust fit has been made. The function was buit-in for MATLAB for the curve fitting tool, however a detailed working is presented here and was chosen based on the result of CFD for unit cell which essentially meant one row. The dcomentation of the tool provided sufficient information for examining the fit.

By Eq. (19), one can devise a vector form for the chosen interval of inlet conditions, having 121 sample points denoted by \(n\), replacing \({\dot{m}}_{w}\) by the vector \({{\varvec{M}}}_{{\varvec{w}}}\)

$$\begin{aligned}{\left\{{{\varvec{M}}}_{{\varvec{w}}}\right\}}_{i}&= {P}_{1}{\left\{{\varvec{R}}{{\varvec{H}}}_{{\varvec{i}}{\varvec{n}}}\right\}}_{i}^{2}+{P}_{2}{\left\{{\varvec{D}}{\varvec{B}}{{\varvec{T}}}_{{\varvec{i}}{\varvec{n}}}\right\}}_{{\varvec{i}}}^{2}+{P}_{3}{\left\{{\varvec{R}}{{\varvec{H}}}_{{\varvec{i}}{\varvec{n}}}\right\}}_{i}\\& \quad +{P}_{4}{\left\{{\varvec{D}}{\varvec{B}}{{\varvec{T}}}_{{\varvec{i}}{\varvec{n}}}\right\}}_{i}+{P}_{5} {\left\{{\varvec{R}}{{\varvec{H}}}_{{\varvec{i}}{\varvec{n}}}\right\}}_{i} {\left\{{\varvec{D}}{\varvec{B}}{{\varvec{T}}}_{{\varvec{i}}{\varvec{n}}}\right\}}_{i}+{P}_{6}\end{aligned}$$
(A1)
$${\left\{{{\varvec{M}}}_{{\varvec{w}}}\right\}}_{i}= {P}_{1}{x}_{1i}+{P}_{2}{x}_{2i}+{P}_{3}{x}_{3i}+{P}_{4}{x}_{4i}+{P}_{5} {x}_{5i}+{P}_{6}$$
(A2)
$$\forall 1\le i\le n$$

where Eqs. (A1) and (A 2) are equivalent. This model can be represented by estimated values of coefficients in a vector \({\varvec{\beta}}\) and error vector \({\varvec{\epsilon}}\) in Eq. (A 3).

$${{\varvec{M}}}_{{\varvec{w}}}= {\varvec{X}}{\varvec{\beta}}+{\varvec{\epsilon}}$$
(A3)

where \({\varvec{X}}\) is a 121 by 6 matrix of values of \(DB{T}_{in}\) and \(R{H}_{in}\) given by Equation

$${\varvec{X}}= \left[\begin{array}{cccc}{x}_{1i}& \cdots & {x}_{5i}& 1\\ \vdots & \ddots & \vdots & \vdots \\ {x}_{1n}& \cdots & {x}_{5n}& 1\end{array}\right]$$
(A4)
$$\forall 1\le i<n$$

For method of least squares in linear regression, the matrix form for estimated parameters can be given by Eq. (A 5) as elements of vector \(\widehat{{\varvec{\beta}}}\)

$$\widehat{{\varvec{\beta}}}={\left({{\varvec{X}}}^{T}{\varvec{X}}\right)}^{-1}{{\varvec{X}}}^{T}{{\varvec{M}}}_{{\varvec{w}}}$$
(A5)

The estimated value for the variable of interest can then be evaluated from Eq. (A 6) where \(H\) denotes the hat matrix.

$${\widehat{{\varvec{M}}}}_{{\varvec{w}}}={\varvec{X}}\widehat{{\varvec{\beta}}}={\varvec{H}}{{\varvec{M}}}_{{\varvec{w}}}$$
(A6)

Matrix of residuals can be found out by the hat matrix directly by Eq. (A 7).

$${\varvec{r}}=\left(1-{\varvec{H}}\right){{\varvec{M}}}_{{\varvec{w}}}$$
(A7)

Since we have used robust regression technique, a weighted estimate is required. The vector of weights \({\varvec{W}}\) is not given to the routine rather loop in bisquare program will calculate and assume suitable values. The system of weigthed least squares can be given by Eq. (A 8) in vector form. The revised form of estimated parameter vector \({\widehat{{\varvec{\beta}}}}_{{\varvec{W}}}\) can be given in Eq. (A 9).

$${\varvec{s}}={\sum }_{i=1}^{n}{\left\{{\varvec{W}}\right\}}_{{\varvec{i}}}{\left({\left\{{{\varvec{M}}}_{{\varvec{w}}}\right\}}_{{\varvec{i}}}-{\left\{{\widehat{{\varvec{M}}}}_{{\varvec{w}}}\right\}}_{{\varvec{i}}}\right)}^{2}$$
(A8)
$${\widehat{{\varvec{\beta}}}}_{{\varvec{W}}}={\left({{\varvec{X}}}^{T}{\varvec{W}}{\varvec{X}}\right)}^{-1}{{\varvec{X}}}^{T}{\varvec{W}}{{\varvec{M}}}_{{\varvec{w}}}$$
(A9)

For bisquare robust fit, adjusted residuals are required after the model has been fitted by weighted least square method. The adjusted residuals are given in Eq. (A 10) in which \(h\) is the leverage for the residual points.

$$r{}_{adj}=r/\sqrt{1-h}$$
(A10)

Standardized adjusted residuals attain the form in Eq. (A 11) where the tuning factor \(K\) assumes a value of 4.685 and \({V}_{r}\) is the robust variance calculated by median absolute deviation (\(MAD)\) as in Eq. (A 12). The values are stored in a vector \({\varvec{U}}\) of length \(n\).

$${r}_{std,adj}={r}_{adj}/K {V}_{r}$$
(A11)
$${V}_{r}=MAD/0.6745$$
(A12)
$${\left\{{\varvec{U}}\right\}}_{{\varvec{i}}}={{r}_{std,adj}|}_{i}$$
(A13)

The robust weights are stored in a vector \({{\varvec{W}}}_{{\varvec{r}}}\) which is a piecewise function of standard adjusted residual as in Eq. (A 14).

$${\left\{{{\varvec{W}}}_{{\varvec{r}}}\right\}}_{i}=\left\{\begin{array}{ll}{\left(1-{\left\{{\varvec{U}}\right\}}_{i}^{2}\right)}^{2},&\quad {|\left\{{\varvec{U}}\right\}}_{i}|<1\\ 0,&\quad {|\left\{{\varvec{U}}\right\}}_{i}|\ge 1\end{array}\right.$$
(A14)

If the fit converges, the finalized fit is obtained with the parameters in vector \({\widehat{{\varvec{\beta}}}}_{{\varvec{W}}}\) otherwise, the loop is repeated from the initial fit to the least square method without weights.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqui, M., Azam, M.A. & Ali, H.M. Parametric Evaluation of Condensate Water Yield from Plain Finned Tube Heat Exchangers in Atmospheric Water Generation. Arab J Sci Eng 47, 16251–16271 (2022). https://doi.org/10.1007/s13369-022-06832-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06832-3

Keywords

Navigation