Skip to main content
Log in

Reduction in Graphene Oxide by Sodium Borohydride for Enhanced BR13 Dye and Cu2+ Adsorption

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, reduced graphene oxide (RGO) with good water dispersibility and excellent adsorption performance was successfully prepared using sodium borohydride (NaBH4) as reductant, and their characterization and adsorption performance for Basic Red13 (BR13) and Cu2+ were analyzed. The results showed that RGO had an obvious graphene-like structure with the C/O ratio of 3.19, while the C/O ratio of graphene oxide (GO) was only 1.81. The reason for the good water dispersibility of RGO was the retention of partial oxygen-containing groups, especially carboxyl groups. The adsorption of RGO for BR13 and Cu2+ was typical monolayer physisorption, which could be well-described by pseudo-first-order and Langmuir isotherm models. The maximum adsorption capacities of RGO were 1674.01 mg/g for BR13 at pH = 13 and 164.72 mg/g for Cu2+ at pH = 6, which much higher than the corresponding values of 1258.65 mg/g and 123.14 mg/g for GO. In particular, the adsorption capacity of RGO for BR13 was the highest value reported so far. Moreover, no significant loss of adsorption performance was observed even after five cycles. This work suggested that reduced graphene oxide was an efficient adsorbent for the removal of organic dyes and heavy metal ions from water, which had great potential in pollution control applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Siyal, A.A.; Shamsuddin, M.R.; Khan, M.I.; Rabat, N.E.; Zulfiqar, M.; Man, Z.; Siame, J.; Azizli, K.A.: A review on geopolymers as emerging materials for the adsorption of heavy metals and dyes. J. Environ. Manage. 224, 327–339 (2018)

    Google Scholar 

  2. Ye, W.; Liu, R.; Chen, X.; Chen, Q.; Lin, J.; Lin, X.; Bruggen, B.V.; Zhao, S.: Loose nanofiltration-based electrodialysis for highly efficient textile wastewater treatment. J. Membrane Sci. 608, 118182 (2020)

    Google Scholar 

  3. Mbamba, C.K.; Lindblom, E.; Flores-Alsina, X.; Tait, S.; Anderson, S.; Saagi, R.; Batstone, D.J.; Gernaey, K.V.; Jeppsson, U.: Plant-wide model-based analysis of iron dosage strategies for chemical phosphorus removal in wastewater treatment systems. Water Res. 155, 12–25 (2019)

    Google Scholar 

  4. Liang, J.; Mai, W.; Wang, J.; Li, X.; Su, M.; Du, J.; Wu, Y.; Dai, J.; Tang, Q.; Gao, J.; Liu, Y.; Tang, J.; Wei, Y.: Performance and microbial communities of a novel integrated industrial-scale pulp and paper wastewater treatment plant. J. Clean. Prod. 278, 123896 (2020)

    Google Scholar 

  5. Dotto, G.L.; McKay, G.: Current scenario and challenges in adsorption for water treatment. J. Environ. Chem. Eng. 8, 103988 (2020)

    Google Scholar 

  6. Da’na, E.: Adsorption of heavy metals on functionalized-mesoporous silica: a review. Micropor. Mesopor. Mat. 247, 145–157 (2017)

    Google Scholar 

  7. Cheng, S.; Zhang, L.; Ma, A.; Xia, H.; Peng, J.; Li, C.; Shu, J.: Comparison of activated carbon and iron/cerium modified activated carbon to remove methylene blue from wastewater. J. Environ. Sci. 65, 92–102 (2018)

    Google Scholar 

  8. Lan, J.; Dong, Y.; Sun, Y.; Fen, L.; Zhou, M.; Hou, H.; Du, D.: A novel method for solidification/stabilization of Cd(II), Hg(II), Cu(II), and Zn(II) by activated electrolytic manganese slag. J. Hazard. Mater. 409, 124933 (2021)

    Google Scholar 

  9. Chen, Q.; Yao, Y.; Li, X.; Lu, J.; Zhou, J.; Huang, Z.: Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. J. Water Process Eng. 26, 289–300 (2018)

    Google Scholar 

  10. Ramezanalizadeh, H.; Manteghi, F.: Synthesis of a novel MOF/CuWO4 heterostructure for efficient photocatalytic degradation and removal of water pollutants. J. Clean. Prod. 172, 2655–2666 (2018)

    Google Scholar 

  11. Chauhan, M.; Saini, V.K.; Suthar, S.: Enhancement in selective adsorption and removal efficiency of natural clay by intercalation of Zr-pillars into its layered nanostructure. J. Clean. Prod. 258, 120686 (2020)

    Google Scholar 

  12. Ma, Y.; Zheng, D.; Mo, Z.; Dong, R.; Qiu, X.: Magnetic lignin-based carbon nanoparticles and the adsorption for removal of methyl orange. Colloid. Surface. A. 559, 226–234 (2018)

    Google Scholar 

  13. Satayeva, A.R.; Howell, C.A.; Korobeinyk, A.V.; Jandosov, J.; Inglezakis, V.J.; Mansurov, Z.A.; Mikhalovsky, S.V.: Investigation of rice husk derived activated carbon for removal of nitrate contamination from water. Sci. Total Environ. 630, 1237–1245 (2018)

    Google Scholar 

  14. Ren, Y.; Han, Y.; Lei, X.; Lu, C.; Liu, J.; Zhang, G.; Zhang, B.; Zhang, Q.: A magnetic ion exchange resin with high efficiency of removing Cr (VI). Colloid. Surface. A. 604, 125279 (2020)

    Google Scholar 

  15. Li, H.; Zheng, F.; Wang, J.; Zhou, J.; Huang, X.; Chen, L.; Hu, P.; Gao, G.; Zhen, Q.; Bashir, S.; Liu, J.L.: Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance. Chem. Eng. J. 390, 124513 (2020)

    Google Scholar 

  16. Peng, W.; Li, H.; Liu, Y.; Song, S.: A review on heavy metal ions adsorption from water by graphene oxide and its composites. J. Mol. Liq. 230, 496–504 (2017)

    Google Scholar 

  17. Zhao, J.; Wang, Z.; Zhao, Q.; Xing, B.: Adsorption of phenanthrene on multilayer graphene as affected by surfactant and exfoliation. Environ. Sci. Technol. 48, 331–339 (2014)

    Google Scholar 

  18. Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R.K.; Maegawa, K.; Tan, W.K.; Kawamura, G.; Kar, K.K.; Matsuda, A.: Heteroatom doped graphene engineering for energy storage and conversion. Mater Today 39, 47–65 (2020)

    Google Scholar 

  19. Song, D.; Mahajan, A.; Secor, E.B.; Hersam, M.C.; Francis, L.F.; Frisbie, C.D.: High-resolution transfer printing of graphene lines for fully printed, flexible electronics. ACS Nano 11, 7431–7439 (2017)

    Google Scholar 

  20. Reina, G.; González-Domínguez, J.M.; Criado, A.; Vázquez, E.; Bianco, A.; Prato, M.: Promises, facts and challenges for graphene in biomedical applications. Chem. Soc. Rev. 46, 4400–4416 (2017)

    Google Scholar 

  21. Wu, W.; Shi, Y.; Liu, G.; Fan, X.; Yu, Y.: Recent development of graphene oxide based forward osmosis membrane for water treatment: a critical review. Desalination 491, 114452 (2020)

    Google Scholar 

  22. Thakur, K.; Kandasubramanian, B.: Graphene and graphene oxide-based composites for removal of organic pollutants: a review. J. Chem. Eng. Data 64, 833–867 (2019)

    Google Scholar 

  23. Wei, M.; Chai, H.; Cao, Y.; Jia, D.: Sulfonated graphene oxide as an adsorbent for removal of Pb2+ and methylene blue. J. Colloid Interf. Sci. 524, 297–305 (2018)

    Google Scholar 

  24. Wang, X.; Yuan, Q.; Li, J.; Ding, F.: The transition metal surface dependent methane decomposition in graphene chemical vapor deposition growth. Nanoscale 9, 11584–11589 (2018)

    Google Scholar 

  25. Martinez, A.; Fuse, K.; Yamashita, S.: Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers. Appl. Phys. Lett. 99, 121107 (2011)

    Google Scholar 

  26. De Silva, K.K.H.; Huang, H.; Joshi, R.K.; Yoshimura, M.: Chemical reduction of graphene oxide using green reductants. Carbon 119, 190–199 (2017)

    Google Scholar 

  27. De Silva, K.K.H.; Huang, H.; Yoshimura, M.: Progress of reduction of graphene oxide by ascorbic acid. Appl. Surf. Sci. 447, 338–346 (2018)

    Google Scholar 

  28. Yousefi, N.; Wong, K.K.W.; Hosseinidoust, Z.; Sørensen, H.O.; Bruns, S.; Zheng, Y.; Tufenkji, N.: Hierarchically porous, ultra-strong reduced graphene oxide-cellulose nanocrystal sponges for exceptional adsorption of water contaminants. Nanoscale 10, 7171–7184 (2018)

    Google Scholar 

  29. Erickson, K.; Erni, R.; Lee, Z.; Alem, N.; Gannett, W.; Zettl, A.: Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 22, 4467–4472 (2010)

    Google Scholar 

  30. Gupta, K.; Khatri, O.P.: Reduced graphene oxide as an effective adsorbent for removal of malachite green dye: plausible adsorption pathways. J. Colloid Interf. Sci. 501, 11–21 (2017)

    Google Scholar 

  31. Chang, C.F.; Truong, Q.D.; Chen, J.R.: Graphene sheets synthesized by ionic-liquid-assisted electrolysis for application in water purification. Appl. Surf. Sci. 264, 329–334 (2013)

    Google Scholar 

  32. Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M.: Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    Google Scholar 

  33. Tang, H.; Zhao, Y.; Shan, S.; Yang, X.; Liu, D.; Cui, F.; Xing, B.: Wrinkle-and edge-adsorption of aromatic compounds on graphene oxide as revealed by atomic force microscopy, molecular dynamics simulation, and density functional theory. Environ. Sci. Technol. 52, 7689–7697 (2018)

    Google Scholar 

  34. Talyzin, A.V.; Hausmaninger, T.; You, S.; Szabo, T.: The structure of graphene oxide membranes in liquid water, ethanol and water-ethanol mixtures. Nanoscale 6, 272–281 (2014)

    Google Scholar 

  35. Saleem, H.; Haneef, M.; Abbasi, H.Y.: Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Mater. Chem. Phys. 204, 1–7 (2018)

    Google Scholar 

  36. Jeong, H.K.; Lee, Y.P.; Lahaye, R.J.W.E.; Park, M.H.; An, K.H.; Kim, I.J.; Yang, C.; Park, C.Y.; Ruoff, R.S.; Lee, Y.H.: Evidence of graphitic AB stacking order of graphite oxides. J. Am. Chem. Soc. 30, 1362–1366 (2008)

    Google Scholar 

  37. Sun, L.; Yu, H.; Fugetsu, B.: Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution. J. Hazard. Mater. 203–204, 101–110 (2012)

    Google Scholar 

  38. Wang, J.; Chen, Z.; Chen, B.: Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. Environ. Sci. Technol. 48, 4817–4825 (2014)

    Google Scholar 

  39. Hu, Z.; Chen, Y.; Hou, Q.; Yin, R.; Liu, F.; Chen, H.: Characterization of graphite oxide after heat treatment. New J. Chem. 36, 1373 (2012)

    Google Scholar 

  40. Shen, Y.; Boffa, V.; Corazzari, I.; Qiao, A.; Tao, H.; Yue, Y.: Revealing hidden endotherm of Hummers’ graphene oxide during low-temperature thermal reduction. Carbon 138, 337–347 (2018)

    Google Scholar 

  41. Chaabane, L.; Beyou, E.; El Ghali, A.; Baouab, M.H.V.: Comparative studies on the adsorption of metal ions from aqueous solutions using various functionalized graphene oxide sheets as supported adsorbents. J. Hazard. Mater. 389, 121839 (2019)

    Google Scholar 

  42. Li, D.; Müller, M.B.; Gilje, S.; Kaner, R.B.; Wallace, G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008)

    Google Scholar 

  43. Gao, J.; Liu, F.; Liu, Y.; Ma, N.; Wang, Z.; Zhang, X.: Environment-friendly method to produce graphene that employs vitamin c and amino acid. Chem. Mater. 22, 2213–2218 (2010)

    Google Scholar 

  44. Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Google Scholar 

  45. Konios, D.; Stylianakis, M.M.; Stratakis, E.; Kymakis, E.: Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interf. Sci. 430, 108–112 (2014)

    Google Scholar 

  46. Hu, J.; Kong, G.; Zhu, Y.; Che, C.: Ultrafast room-temperature reduction of graphene oxide by sodium borohydride, sodium molybdate and hydrochloric acid. Chin. Chem. Lett. 32, 543–547 (2021)

    Google Scholar 

  47. Luo, S.; Xu, X.; Zhou, G.; Liu, C.; Tang, Y.; Liu, Y.: Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb (II) from wastewater. J. Hazard. Mater. 274, 145–155 (2014)

    Google Scholar 

  48. Mishra, S.; Yadav, A.; Verma, N.: Carbon gel-supported Fe-graphene disks: synthesis, adsorption of aqueous Cr(VI) and Pb(II) and the removal mechanism. Chem. Eng. J. 326, 987–999 (2017)

    Google Scholar 

  49. Zhao, G.; Li, J.; Ren, X.; Chen, C.; Wang, X.: Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol. 45, 10454–10462 (2011)

    Google Scholar 

  50. He, K.; Chen, G.; Zeng, G.; Chen, A.; Huang, Z.; Shi, J.; Peng, M.; Huang, T.; Hu, L.: Enhanced removal performance for methylene blue by kaolin with grapheme oxide modification. J. Taiwan Inst. Chem. Eng. 89, 77–85 (2018)

    Google Scholar 

  51. Zhao, G.; Zhu, H.: Cation-π interactions in graphene-containing systems for water treatment and beyond. Adv. Mater. 32, 1905756 (2020)

    Google Scholar 

  52. Liu, Y.; Men, B.; Hu, A.; You, Q.; Liao, G.; Wang, D.: Facile synthesis of graphene-based hyper-cross-linked porous carbon composite with superior adsorption capability for chlorophenols. J. Environ. Sci. 90, 395–407 (2020)

    Google Scholar 

  53. Xiao, J.; Lv, W.; Xie, Z.; Tan, Y.; Song, Y.; Zheng, Q.: Environmentally friendly reduced graphene oxide as a broad-spectrum adsorbent for anionic and cationic dyes via π-π interactions. J. Mater. Chem. A. 4, 12126–12135 (2016)

    Google Scholar 

  54. Lagergren, S.: About the theory of so-called sorption of soluble substances. Kung. Sven. Veten. Hand. 24, 1–39 (1898)

    Google Scholar 

  55. Ho, Y.S.; Mckay, G.: Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465 (1999)

    Google Scholar 

  56. Van, T.T.; Nguyen, D.T.C.; Le, H.T.N.; Vo, D.N.; Nanda, S.; Nguyen, T.D.: Optimization, equilibrium, adsorption behavior and role of surface functional groups on graphene oxide-based nanocomposite towards diclofenac drug. J. Environ. Sci. 93, 137–150 (2020)

    Google Scholar 

  57. Yan, H.; Wu, H.; Li, K.; Wang, Y.; Tao, X.; Yang, H.; Li, A.; Cheng, R.: Influence of the surface structure of graphene oxide on the adsorption of aromatic organic compounds from water. ACS Appl. Mater. Inter. 7, 6690–6697 (2015)

    Google Scholar 

  58. Wang, J.; Chen, B.: Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials. Chem. Eng. J. 281, 379–388 (2015)

    Google Scholar 

  59. Cheung, W.H.; Szeto, Y.S.; McKay, G.: Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresour. Technol. 98, 2897–2904 (2007)

    Google Scholar 

  60. Zhang, C.; Luan, J.; Yu, X.; Chen, W.: Characterization and adsorption performance of graphene oxide-montmorillonite nanocomposite for the simultaneous removal of Pb2+ and p-nitrophenol. J. Hazard. Mater. 378, 120739 (2019)

    Google Scholar 

  61. Robati, D.; Rajabi, M.; Moradi, O.; Najafi, F.; Tyagi, I.; Agarwal, S.; Gupta, V.K.: Kinetics and thermodynamics of malachite green dye adsorption from aqueous solutions on graphene oxide and reduced graphene oxide. J. Mol. Liq. 214, 259–263 (2016)

    Google Scholar 

  62. Bulut, Y.; Aydın, H.: A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 194, 259–267 (2006)

    Google Scholar 

  63. Payne, K.; Abdel-Fattah, T.: Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: effects of pH, temperature, and ionic strength. J. Environ. Sci. Heal. A 40, 723–749 (2005)

    Google Scholar 

  64. Yao, Q.F.; Xiong, Y.; Wang, H.W.; Wang, C.; Sun, Q.F.: MnO2 nanoflakes/cellulose nanofibre aerogel fabricated via ultrasonication for high-performance water desalination. J. Mater. Chem. A 5, 9580–9590 (2017)

    Google Scholar 

  65. Rauf, M.; Bukallah, S.; Hamour, F.; Nasir, A.: Adsorption of dyes from aqueous solutions onto sand and their kinetic behavior. Chem. Eng. J. 137, 238–243 (2008)

    Google Scholar 

  66. Vijayaraghavan, K.; Padmesh, T.V.N.; Palanivelu, K.; Velan, M.: Biosorption of nickel (II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. J. Hazard. Mater. 133, 304–308 (2006)

    Google Scholar 

  67. Yang, S.T.; Chang, Y.; Wang, H.; Liu, G.; Chen, S.; Wang, Y.; Liu, Y.; Cao, A.: Folding/aggregation of graphene oxide and its application in Cu2+ removal. J. Colloid Interf. Sci. 351, 22–127 (2010)

    Google Scholar 

  68. Chen, X.; Chen, B.: Macroscopic and spectroscopic investigations of the adsorption of nitroaromatic compounds on graphene oxide, reduced graphene oxide, and graphene nanosheets. Environ. Sci. Technol. 49, 6181–6189 (2015)

    Google Scholar 

  69. Cui, L.; Wang, Y.; Gao, L.; Hu, L.; Yan, L.; Wei, Q.; Du, B.: EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: adsorption mechanism and separation property. Chem. Eng. J. 281, 1–10 (2015)

    Google Scholar 

  70. Kumar, S.; Nair, R.R.; Pillai, P.B.; Gupta, S.N.; Iyengar, M.A.; Sood, A.K.: Graphene oxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS appl. Mater. Interf. 6, 17426–17436 (2014)

    Google Scholar 

  71. Zhao, G.; Li, J.; Wang, X.: Kinetic and thermodynamic study of 1-naphthol adsorption from aqueous solution to sulfonated graphene nanosheets. Chem. Eng. J. 173, 185–190 (2011)

    Google Scholar 

  72. Xu, C.; Wang, X.; Yang, L.; Wu, Y.: Fabrication of a graphene–cuprous oxide composite. J. Solid State Chem. 182, 2486–2490 (2009)

    Google Scholar 

  73. Boudechiche, N.; Fares, M.; Ouyahia, S.; Yazid, H.; Trari, M.; Sadaoui, Z.: Comparative study on removal of two basic dyes in aqueous medium by adsorption using activated carbon from Ziziphus lotus stones. Microchemical J. 146, 1010–1018 (2019)

    Google Scholar 

  74. Dil, E.A.; Asfaram, M.A.; Mehrabi, F.; Bazrafshan, A.A.; Tayebi, L.: Synthesis and application of Ce-doped TiO2 nanoparticles loaded on activated carbon for ultrasound-assisted adsorption of Basic Red 46 dye. Ultrason. Sonochem. 58, 104702 (2019)

    Google Scholar 

  75. Safari, M.; Khataee, A.; Soltani, R.D.C.; Rezaee, R.: Ultrasonically facilitated adsorption of an azo dye onto nanostructures obtained from cellulosic wastes of broom and cooler straw. J. Colloid Interf. Sci. 522, 228–241 (2018)

    Google Scholar 

  76. Bayram, T.; Bucak, S.; Ozturk, D.: BR13 dye removal using Sodium Dodecyl Sulfate modified montmorillonite: equilibrium, thermodynamic, kinetic and reusability studies. Chem. Eng. Process. 158, 108186 (2020)

    Google Scholar 

  77. Chen, Y.; Li, M.; Li, Y.; Liu, Y.; Chen, Y.; Li, H.; Li, L.; Xu, F.; Jiang, H.: Chen, L,: Hydroxyapatite modified sludge-based biochar for the adsorption of Cu2+ and Cd2+: Adsorption behavior and mechanisms. Bioresource Technol. 321, 124413 (2021)

    Google Scholar 

  78. Liu, J.; Hu, C.; Huang, Q.: Adsorption of Cu2+, Pb2+, and Cd2+ onto oiltea shell from water. Bioresource Technol. 271, 487–491 (2019)

    Google Scholar 

  79. Mi, X.; Huang, G.; Xie, W.; Wang, W.; Liu, Y.; Gao, J.: Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions. Carbon 50, 4856–4864 (2012)

    Google Scholar 

  80. Li, Y.H.; Ding, J.; Luan, Z.; Di, Z.; Zhu, Y.; Xu, C.; Wu, D.; Wei, B.: Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41, 2787–2792 (2003)

    Google Scholar 

  81. Tan, P.; Sun, J.; Hu, Y.; Fang, Z.; Bi, Q.; Chen, Y.; Cheng, J.: Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes. J. Hazard. Mater. 297, 251–260 (2015)

    Google Scholar 

  82. Peng, M.; Chen, G.; Zeng, G.; Chen, A.; He, K.; Huang, Z.; Hu, L.; Shi, J.; Li, H.; Yuan, L.; Hang, T.: Superhydrophobic kaolinite modified graphene oxide-melamine sponge with excellent properties for oil-water separation. Appl. Clay Sci. 163, 63–71 (2018)

    Google Scholar 

Download references

Acknowledgements

This research was supported by TIANGONG UNIVERSITY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiankun Wang.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Wang, J., Guo, J. et al. Reduction in Graphene Oxide by Sodium Borohydride for Enhanced BR13 Dye and Cu2+ Adsorption. Arab J Sci Eng 48, 8387–8399 (2023). https://doi.org/10.1007/s13369-022-06708-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06708-6

Keywords

Navigation