Skip to main content
Log in

Failure Characteristics of Obliqued-layers Shale Specimens from Experimental Observation

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Understanding the cracking characteristics of shale is necessary for oil and gas exploitation engineering. The cracking behaviours and failure modes of obliqued-layers shale specimens were studied under uniaxial compression stress. The acoustic emission response was monitored, and the displacement and strain fields were calculated with digital image correlation (DIC). For the flawed shale specimens, the cracks initiated from the flaw tips most of the time and propagated towards the boundaries, and bedding layers led to the branching and diversion of the crack path. The first cracks did not always start from the flaw tips due to microstructure distribution. Tensile cracks dominated the cracking process, and shear cracks mainly contributed to the final failure of the flawed shale specimens. The failure modes remained unchanged when the flaw rotated from 30° to 60°. However, shear cracks along the bedding layers and tensile cracks parallel to the maximum principal stress dominated the failure of the intact shale specimen. The flaw controlled the location of cracking initiation, and the bedding layers affected the cracking path for the flawed specimen. The bedding layers also control the failure mode of the intact specimen. The experimental results contribute to the understanding of cracking properties in layered anisotropic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bonini, M.; Debernardi, D.; Barla, M.; Barla, G.: The mechanical behaviour of clay shales and implications on the design of tunnels. Rock Mech. Rock Eng. 42, 361–388 (2009). https://doi.org/10.1007/s00603-007-0147-6

    Article  Google Scholar 

  2. Lisjak, A.; Grasselli, G.; Vietor, T.: Continuum–discontinuum analysis of failure mechanisms around unsupported circular excavations in anisotropic clay shales. Int. J. Rock Mech. Mining Sci. 65, 96–115 (2014). https://doi.org/10.1016/j.ijrmms.2013.10.006

    Article  Google Scholar 

  3. Chong, Z.; Li, X.; Hou, P.: Experimental and numerical study of the effects of layer orientation on the mechanical behavior of shale. Arab. J. Sci. Eng. 44, 4725–4743 (2019). https://doi.org/10.1007/s13369-018-3533-3

    Article  Google Scholar 

  4. Wang, Y.; Xiong, L.: Numerical analysis of the influence of bolt set on the shear resistance of jointed rock masses. Civil Eng. J. 6, 1039–1055 (2020). https://doi.org/10.28991/cej-2020-03091527

    Article  Google Scholar 

  5. Josh, M.; Esteban, L.; Delle Piane, C.; Sarout, J.; Dewhurst, D.N.; Clennell, M.B.: Laboratory characterisation of shale properties. J. Petrol. Sci. Eng. 88–89, 107–124 (2012). https://doi.org/10.1016/j.petrol.2012.01.023

    Article  Google Scholar 

  6. Guo, Y.; Yang, C.; Wang, L.; Xu, F.: Study on the influence of bedding density on hydraulic fracturing in shale. Arab. J. Sci. Eng. 43, 6493–6508 (2018). https://doi.org/10.1007/s13369-018-3263-6

    Article  Google Scholar 

  7. Gale, J.F.W.; Reed, R.M.; Holder, J.: Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments. Aapg Bull. 91, 603–622 (2007). https://doi.org/10.1306/11010606061

    Article  Google Scholar 

  8. Ban, Y.; Fu, X.; Xie, Q.: Revealing the laminar shale microdamage mechanism considering the relationship between fracture geometrical morphology and acoustic emission power spectrum characteristics. B. Eng. Geol. Environ. 79, 1083–1096 (2020). https://doi.org/10.1007/s10064-019-01599-8

    Article  Google Scholar 

  9. Kim, K.Y.; Zhuang, L.; Yang, H.; Kim, H.; Min, K.: Strength anisotropy of Berea sandstone: results of X-ray computed tomography, compression tests, and discrete modeling. Rock Mech. Rock Eng. 49, 1201–1210 (2016). https://doi.org/10.1007/s00603-015-0820-0

    Article  Google Scholar 

  10. Li, X.; Duan, Y.; Li, S.; Zhou, R.: Study on the progressive failure characteristics of Longmaxi Shale under uniaxial compression conditions by X-ray micro-computed tomography. Energies 10, 303 (2017). https://doi.org/10.3390/en10030303

    Article  Google Scholar 

  11. Li, Y.; Xue, L.; Wu, X.: Study on acoustic emission and X-ray computed-tomography characteristics of shale samples under uniaxial compression tests. Earth Sci, Environ (2019) https://doi.org/10.1007/s12665-019-8185-4

    Book  Google Scholar 

  12. Fazelabdolabadi, B.; Golestan, M.H.: Towards Bayesian quantification of permeability in micro-scale porous structures – the database of micro networks. HighTech Innovation J. 1, 148–160 (2020). https://doi.org/10.28991/HIJ-2020-01-04-02

    Article  Google Scholar 

  13. Xiong, L.X.; Song, X.G.: Mechanical properties of cement mortar after dry–wet cycles and high temperature. Civil Eng. J. 6, 1031–1038 (2020). https://doi.org/10.28991/cej-2020-03091526

    Article  Google Scholar 

  14. Wang, Z.; Chen, X.; Xue, X.; Zhang, L.; Zhu, W.: Mechanical parameter inversion in sandstone diversion tunnel and stability analysis during operation period. Civil Eng. J. 5, 1917–1928 (2019). https://doi.org/10.28991/cej-2019-03091382

    Article  Google Scholar 

  15. Wong, L.N.Y.; Einstein, H.H.: Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression. Int. J. Rock Mech. Min. 46, 239–249 (2009). https://doi.org/10.1016/j.ijrmms.2008.03.006

    Article  Google Scholar 

  16. Zhang, J.Z.; Zhou, X.P.: Forecasting catastrophic rupture in brittle rocks using precursory AE time series. J. Geophys. Res. Solid Earth (2020). https://doi.org/10.1029/2019JB019276

    Article  Google Scholar 

  17. Zhang, J.Z.; Zhou, X.P.; Zhou, L.S.; Berto, F.: Progressive failure of brittle rocks with non-isometric flaws: insights from acousto-optic-mechanical (AOM) data. Fatigue Fract. Eng. M. 42, 1787–1802 (2019). https://doi.org/10.1111/ffe.13019

    Article  Google Scholar 

  18. Liu, H.; Zhang, Y.: Numerical simulation of the failure process and mechanical behavior of a rock material with nonpersistent cracks under compression. Arab. J. Sci. Eng. 43, 3673–3683 (2018). https://doi.org/10.1007/s13369-017-3020-2

    Article  Google Scholar 

  19. Zhou, J.; Zeng, Y.; Guo, Y.; Chang, X.; Liu, L.; Wang, L.; Hou, Z.; Yang, C.: Effect of natural filling fracture on the cracking process of shale Brazilian disc containing a central straight notched flaw. J. Petrol. Sci. Eng. 196, 107993 (2021). https://doi.org/10.1016/j.petrol.2020.107993

    Article  Google Scholar 

  20. Morgan, S.P.; Einstein, H.H.: Cracking processes affected by bedding planes in opalinus shale with flaw pairs. Eng. Fract. Mech. 176, 213–234 (2017). https://doi.org/10.1016/j.engfracmech.2017.03.003

    Article  Google Scholar 

  21. Wong, L.N.Y.; Xiong, Q.: A method for multiscale interpretation of fracture processes in Carrara marble specimen containing a single flaw under uniaxial compression. J. Geophys. Res. Solid Earth 123, 6459–6490 (2018). https://doi.org/10.1029/2018JB015447

    Article  Google Scholar 

  22. Ulusay, R.: The ISRM suggested methods for rock characterization, testing and monitoring: 2007–2014. Springer (2014). https://doi.org/10.1007/978-3-319-07713-0

    Article  Google Scholar 

  23. Yang, S.; Huang, Y.; Tian, W.; Yin, P.; Jing, H.: Effect of high temperature on deformation failure behavior of Granite specimen containing a single fissure under uniaxial compression. Rock Mech. Rock Eng. 52, 2087–2107 (2019). https://doi.org/10.1007/s00603-018-1725-5

    Article  Google Scholar 

  24. Wang, Y.; Tang, J.; Dai, Z.; Yi, T.: Experimental study on mechanical properties and failure modes of low-strength rock samples containing different fissures under uniaxial compression. Eng. Fract. Mech. 197, 1–20 (2018). https://doi.org/10.1016/j.engfracmech.2018.04.044

    Article  Google Scholar 

  25. Knill, J.L.; Franklin, J.A.; Malone, A.W.: A study of acoustic emission from stressed rock. Int. J. Rock Mech. Min. 5, 87–121 (1968). https://doi.org/10.1016/0148-9062(68)90025-9

    Article  Google Scholar 

  26. Zhang, Q.B.; Zhao, J.: Effect of loading rate on fracture toughness and failure micromechanisms in marble. Eng. Fract. Mech. 102, 288–309 (2013). https://doi.org/10.1016/j.engfracmech.2013.02.009

    Article  Google Scholar 

  27. Voigtländer, A.; Leith, K.; Krautblatter, M.: Subcritical crack growth and progressive failure in Carrara marble under wet and dry conditions. J Geophys. Res. Solid Earth 123, 3780–3798 (2018). https://doi.org/10.1029/2017JB014956

    Article  Google Scholar 

  28. Zhou, X.; Zhang, J.; Berto, F.: Fracture analysis in brittle sandstone by digital imaging and AE techniques: role of flaw length ratio. J. Mater. Civ. Eng. 32, 4020085 (2020). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003151

    Article  Google Scholar 

  29. Chang, S.H.; Lee, C.I.: Estimation of cracking and damage mechanisms in rock under triaxial compression by moment tensor analysis of acoustic emission. Int. J. Rock Mech. Min. 41, 1069–1086 (2004). https://doi.org/10.1016/j.ijrmms.2004.04.006

    Article  Google Scholar 

  30. Xu, Q.; Fan, X.; Huang, R.; Yin, Y.; Hou, S.; Dong, X.; Tang, M.: A catastrophic rockslide-debris flow in Wulong, Chongqing, China in 2009: background, characterization, and causes. Landslides 7, 75–87 (2010). https://doi.org/10.1007/s10346-009-0179-y

    Article  Google Scholar 

  31. Wang, Y.; Li, C.H.; Hu, Y.Z.: Experimental investigation on the fracture behavior of black shale by acoustic emission monitoring and CT image analysis during uniaxial compression. Geophys. J. Int. 213, 660–675 (2018). https://doi.org/10.1093/gji/ggy011/4810549

    Article  Google Scholar 

  32. Zhong, J.; Liu, S.; Ma, Y.; Yin, C.; Liu, C.; Li, Z.; Liu, X.; Li, Y.: Macro-fracture mode and micro-fracture mechanism of shale. Petrol. Exp. Develop. 42, 269–276 (2015). https://doi.org/10.1016/S1876-3804(15)30016-1

    Article  Google Scholar 

  33. Al Houri, A.; Habib, A.; Elzokra, A.; Habib, M.: Tensile testing of soils: history, equipment and methodologies. Civil Eng. J. 6, 591–601 (2020). https://doi.org/10.28991/cej-2020-03091494

    Article  Google Scholar 

  34. Moffitt, C.J.: Footing soil pressure from biaxial loading. Civil Eng. J. 5, 2423–2440 (2019). https://doi.org/10.28991/cej-2019-03091421

    Article  Google Scholar 

  35. Liang, M.; Wang, Z.; Zhang, Y.; Greenwell, C.H.; Li, H.; Yu, Y.; Liu, S.: Experimental investigation on gas permeability in bedding shale with brittle and semi-brittle deformations under triaxial compression. J. Petrol. Sci. Eng. 196, 108049 (2021). https://doi.org/10.1016/j.petrol.2020.108049

    Article  Google Scholar 

  36. Dyskin, A.V.; Sahouryeh, E.; Jewell, R.J.; Joer, H.; Ustinov, K.B.: Influence of shape and locations of initial 3-D cracks on their growth in uniaxial compression. Eng. Fract. Mech. 70, 2115–2136 (2003). https://doi.org/10.1016/S0013-7944(02)00240-0

    Article  Google Scholar 

  37. Zhao, C.; Niu, J.; Zhang, Q.; Yu, S.; Morita, C.: Numerical simulations on cracking behavior of rock-like specimens with single flaws under conditions of uniaxial and biaxial compressions. J. Mater. Civil Eng. 31, 4019305 (2019). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002967

    Article  Google Scholar 

  38. Weng, X.: Modeling of complex hydraulic fractures in naturally fractured formation. J. Unconventional Oil Gas Resour. 9, 114–135 (2015). https://doi.org/10.1016/j.juogr.2014.07.001

    Article  Google Scholar 

  39. Dou, F.; Wang, J.G.; Wang, H.; Hu, B.; Li, C.: Discrete element analysis for hydraulic fracture propagations in laminated reservoirs with complex initial joint properties. Geofluids 2019, 1–23 (2019). https://doi.org/10.1155/2019/3958583

    Article  Google Scholar 

  40. Zhang, Q.; Zhang, X.P.; Zhang, H.; Ji, P.Q.; Wu, S.C.; Peng, J.: Study of interaction mechanisms between hydraulic fracture and weak plane with different strengths and widths using the bonded-particle model based on moment tensors. Eng. Fract. Mech. 225, 106813 (2020). https://doi.org/10.1016/j.engfracmech.2019.106813

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the projects (51008319, 51779021) supported by the National Natural Science Foundation of China, and the open project (LNTCCMA-20200103) from Key Laboratory of New Technology for Construction of Cities in Mountain Area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Xie.

Ethics declarations

Data Availability Statement

The mechanical data and original used during the study are available from the corresponding author by appropriate request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, Yx., Fu, X., Xie, Q. et al. Failure Characteristics of Obliqued-layers Shale Specimens from Experimental Observation. Arab J Sci Eng 46, 10757–10770 (2021). https://doi.org/10.1007/s13369-021-05538-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05538-2

Keywords

Navigation