Skip to main content

Advertisement

Log in

Comparative Energy and Emission Analysis of Oxy-Combustion and Conventional Air Combustion

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Carbon capture and storage and oxy-fuel combustion have recently become more significant due to global warming as well as green energy solutions. Oxy-combustion power plants fueled with natural gas are compatible with today’s clean energy policies. In this study, effects of oxygen content of reactant mixtures used in oxy-combustion on thermodynamic properties, adiabatic flame temperatures, combustion products and pollutant emissions are analyzed using a novel multi-feature equilibrium combustion model. Using natural gas from most important origins (Russia, USA, Iran, Australia) as fuel, results obtained from oxy-fuel combustion for three different O2 fractions are compared with the results of conventional air–fuel combustion for varying equivalence ratio, inlet temperature and pressure. The accuracy of the results is confirmed by two different popular combustion softwares. According to the results, oxy-fuel combustion of same oxygen content with air causes 24% less entropy production but 40 times less NOx emissions which is an indicator of significant decrease in carbon capture and storage costs. Comparison of natural gas of different origins shows that Russian natural gas is more advantageous in terms of NOx emissions where Australian natural gas is more advantageous in terms of entropy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

a :

Mole number of reactant O2

b :

Mole number of reactant CO2

c :

Mole number of reactant N2

C :

Specific heat (kJ/kg K)

CC:

Combustion chamber

E :

Energy

FA:

Fuel/air ratio

h :

Specific enthalpy (kJ/kg)

K :

Equilibrium constant

MW:

Molecular weight

N :

Total number of moles of species

NG:

Natural gas

s :

Specific entropy (kJ/kg K)

T :

Temperature (K)

V :

Volume

X :

Total number of carbon atoms

Y :

Total number of hydrogen atoms

Z :

Total number of oxygen atoms

Q :

Total number of nitrogen atoms

α :

Mole fraction

ε :

Molar air–fuel ratio

Φ :

Equivalence ratio

χ :

Number of moles of exhaust species

a:

Air

ady:

Adiabatic

f:

Fuel

fu:

Fluid or oxidant

in:

Inlet

k :

Exhaust species

p :

Pressure

r:

Reactants

s:

Stoichiometric

wf:

Working fluid

x :

Number of carbon atoms

y :

Number of hydrogen atoms

z :

Number of oxygen atoms

q :

Number of nitrogen atoms

References

  1. Mletzko, J.; Ehlers, S.; Kather, A.: Comparison of natural gas combined cycle power plants with post combustion and oxyfuel technology at different CO2 capture rates. Energy Procedia 86, 2–11 (2016). https://doi.org/10.1016/j.egypro.2016.01.001

    Article  Google Scholar 

  2. Choi, B.S.; Kim, M.J.; Ahn, J.H.; Kim, T.S.: Influence of a recuperator on the performance of the semi-closed oxy-fuel combustion combined cycle. Appl. Therm. Eng. 124, 1301–1311 (2017). https://doi.org/10.1016/j.applthermaleng.2017.06.055

    Article  Google Scholar 

  3. Zhao, Y.; Chi, J.; Zhang, S.; Xiao, Y.: Thermodynamic study of an improved MATIANT cycle with stream split and recompression. Appl. Therm. Eng. 125, 452–469 (2017). https://doi.org/10.1016/j.applthermaleng.2017.05.023

    Article  Google Scholar 

  4. Mathieu, P.; Nihart, R.: Zero-Emission MATIANT Cycle. International Gas Turbine and Aeroengine Congress and Exhibition

  5. Allam, R.J.; Freed, D.A.; Fetvedt*, J.E.; Forrest, B.A.: The oxy-fuel supercritical CO2 allam cycle: new cycle developments to produce even lower-cost electricity from fossil fuels without atmospheric emissions. In: Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition GT2014. (2014)

  6. Scaccabarozzi, R.; Gatti, M.; Martelli, E.: Thermodynamic analysis and numerical optimization of the NET Power oxy-combustion cycle. Appl. Energy 178, 505–526 (2016). https://doi.org/10.1016/j.apenergy.2016.06.060

    Article  Google Scholar 

  7. Allam, R.; Martin, S.; Forrest, B.; Fetvedt, J.; Lu, X.; Freed, D.; Brown, G.W.; Sasaki, T.; Itoh, M.; Manning, J.: Demonstration of the allam cycle: an update on the development status of a high efficiency supercritical carbon dioxide power process employing full carbon capture. Energy Procedia 114, 5948–5966 (2017). https://doi.org/10.1016/j.egypro.2017.03.1731

    Article  Google Scholar 

  8. Scaccabarozzi, R.; Gatti, M.; Martelli, E.: Thermodynamic optimization and part-load analysis of the NET power cycle. Energy Procedia 114, 551–560 (2017). https://doi.org/10.1016/j.egypro.2017.03.1197

    Article  Google Scholar 

  9. Allama, R.J.; Palmer, M.R.; Brown Jr., G.W.; Fetvedta, J.; Freed, D.; Nomoto, H.; Itoh, M.; Okita, N.; Jones Jr., C.: High efficiency and low cost of electricity generation from fossil fuels while eliminating atmospheric emissions, including carbon dioxide

  10. Tsatsaronis, G.; Penkuhn, M.: Exergy Analysis of the allam cycle. In: The 5th International Symposium: Supercritical CO2 Power Cycles March 28-31, 2016, San Antonio, Texas

  11. Sanz, W.; Jericha, H.; Moser, M.; Heitmeir, F.: Thermodynamic and economic investigation of an improved graz cycle power plant for CO2 capture. J. Eng. Gas Turbin. Power 127, 765 (2005). https://doi.org/10.1115/1.1850944

    Article  Google Scholar 

  12. Ferrari, N.; Mancuso, L.; Davison, J.; Chiesa, P.; Martelli, E.; Romano, M.C.: Oxy-turbine for Power Plant with CO2 Capture. Energy Procedia 114, 471–480 (2017). https://doi.org/10.1016/j.egypro.2017.03.1189

    Article  Google Scholar 

  13. Chowdhury, A.S.M.A.; Bugarin, L.; Badhan, A.; Choudhuri, A.; Love, N.: Thermodynamic analysis of a directly heated oxyfuel supercritical power system. Appl. Energy 179, 261–271 (2016). https://doi.org/10.1016/j.apenergy.2016.06.148

    Article  Google Scholar 

  14. Skorek-Osikowska, A.; Bartela, Ł.; Kotowicz, J.: A comparative thermodynamic, economic and risk analysis concerning implementation of oxy-combustion power plants integrated with cryogenic and hybrid air separation units. Energy Convers. Manag. 92, 421–430 (2015). https://doi.org/10.1016/j.enconman.2014.12.079

    Article  Google Scholar 

  15. Rogalev, A.; Rogalev, N.; Kindra, V.; Osipov, S.: Dataset of working fluid parameters and performance characteristics for the oxy-fuel, supercritical CO2 cycle. Data Brief. 27, 104682 (2019). https://doi.org/10.1016/j.dib.2019.104682

    Article  Google Scholar 

  16. Habib, M.A.; Imteyaz, B.; Nemitallah, M.A.: Second law analysis of premixed and non-premixed oxy-fuel combustion cycles utilizing oxygen separation membranes. Appl. Energy (2019). https://doi.org/10.1016/j.apenergy.2019.114213

    Article  Google Scholar 

  17. Jin, B.; Zhao, H.; Zou, C.; Zheng, C.: Comprehensive investigation of process characteristics for oxy-steam combustion power plants. Energy Convers. Manag. 99, 92–101 (2015). https://doi.org/10.1016/j.enconman.2015.04.031

    Article  Google Scholar 

  18. Rogalev, A.; Kindra, V.; Osipov, S.; Rogalev, N.: Thermodynamic analysis of the net power oxy-combustion cycle. In: Presented at the 13-th European Conference on Turbomachinery Fluid dynamics & Thermodynamics ETC13, Lausanne, Switzerland April 8 (2018)

  19. Vega, F.; Camino, S.; Camino, J.A.; Garrido, J.; Navarrete, B.: Partial oxy-combustion technology for energy efficient CO2 capture process. Appl. Energy 253, 113519 (2019). https://doi.org/10.1016/j.apenergy.2019.113519

    Article  Google Scholar 

  20. Climent Barba, F.; Martínez-Denegri Sánchez, G.; Soler Seguí, B.; Gohari Darabkhani, H.; Anthony, E.J.: A technical evaluation, performance analysis and risk assessment of multiple novel oxy-turbine power cycles with complete CO2 capture. J. Clean. Prod. 133, 971–985 (2016). https://doi.org/10.1016/j.jclepro.2016.05.189

    Article  Google Scholar 

  21. Mehrpooya, M.; Zonouz, M.J.: Analysis of an integrated cryogenic air separation unit, oxy-combustion carbon dioxide power cycle and liquefied natural gas regasification process by exergoeconomic method. Energy Convers. Manag. 139, 245–259 (2017). https://doi.org/10.1016/j.enconman.2017.02.048

    Article  Google Scholar 

  22. Hong, J.; Field, R.; Gazzino, M.; Ghoniem, A.F.: Operating pressure dependence of the pressurized oxy-fuel combustion power cycle. Energy 35, 5391–5399 (2010). https://doi.org/10.1016/j.energy.2010.07.016

    Article  Google Scholar 

  23. Oki, Y.; Hamada, H.; Kobayashi, M.; Yuri, I.; Hara, S.: Development of High-efficiency Oxy-fuel IGCC System. Energy Procedia 114, 501–504 (2017). https://doi.org/10.1016/j.egypro.2017.03.1192

    Article  Google Scholar 

  24. Esquivel-Patiño, G.G.; Serna-González, M.; Nápoles-Rivera, F.: Thermal integration of natural gas combined cycle power plants with CO2 capture systems and organic Rankine cycles. Energy Convers. Manag. 151, 334–342 (2017). https://doi.org/10.1016/j.enconman.2017.09.003

    Article  Google Scholar 

  25. Mehrpooya, M.; Ansarinasab, H.; Sharifzadeh, M.M.M.; Rosen, M.A.: Conventional and advanced exergoeconomic assessments of a new air separation unit integrated with a carbon dioxide electrical power cycle and a liquefied natural gas regasification unit. Energy Convers. Manag. 163, 151–168 (2018). https://doi.org/10.1016/j.enconman.2018.02.016

    Article  Google Scholar 

  26. Mehrpooya, M.; Sharifzadeh, M.M.M.; Katooli, M.H.: Thermodynamic analysis of integrated LNG regasification process configurations. Prog. Energy Combust. Sci. 69, 1–27 (2018). https://doi.org/10.1016/j.pecs.2018.06.001

    Article  Google Scholar 

  27. Mehrpooya, M.; Ghorbani, B.: Introducing a hybrid oxy-fuel power generation and natural gas/carbon dioxide liquefaction process with thermodynamic and economic analysis. J. Clean. Prod. 204, 1016–1033 (2018). https://doi.org/10.1016/j.jclepro.2018.09.007

    Article  Google Scholar 

  28. White, C.; Weiland, N.: Preliminary cost and performance results for a natural gas-fired direct sCO2 power plant. In: The 6th International Supercritical CO2 Power Cycles Symposium (2018)

  29. Weiland, N.T.; White, C.W.: Techno-economic analysis of an integrated gasification direct-fired supercritical CO2 power cycle. In: 8th International Conference on Clean Coal Technologies (CCT2017) (2017)

  30. Yantovski, E.I.; Zvagolsky, K.N.; Gavrilenko, E.A.: The cooperate: demo power cycle. Energy Convers. Manag. 36, 861–864 (1995)

    Article  Google Scholar 

  31. Xiang, Y.; Cai, L.; Guan, Y.; Liu, W.; Han, Y.; Liang, Y.: Study on the configuration of bottom cycle in natural gas combined cycle power plants integrated with oxy-fuel combustion. Appl. Energy 212, 465–477 (2018). https://doi.org/10.1016/j.apenergy.2017.12.049

    Article  Google Scholar 

  32. Gładysz, P.; Stanek, W.; Czarnowska, L.; Sładek, S.; Szlęk, A.: Thermo-ecological evaluation of an integrated MILD oxy-fuel combustion power plant with CO2 capture, utilisation, and storage: A case study in Poland. Energy 144, 379–392 (2018). https://doi.org/10.1016/j.energy.2017.11.133

    Article  Google Scholar 

  33. Liu, M.; Lior, N.; Zhang, N.; Han, W.: Thermoeconomic optimization of coolcep-s: a novel zero-CO2 emission power cycle using LNG (liqufied natural gas) coldness. In: 2008 ASME International Mechanical Engineering Congress and Exposition

  34. Gładysz, P.; Ziębik, A.: Life cycle assessment of an integrated oxy-fuel combustion power plant with CO2 capture, transport and storage: Poland case study. Energy 92, 328–340 (2015). https://doi.org/10.1016/j.energy.2015.07.052

    Article  Google Scholar 

  35. Gładysz, P.; Stanek, W.; Czarnowska, L.; Węcel, G.; Langørgen, Ø.: Thermodynamic assessment of an integrated MILD oxyfuel combustion power plant. Energy 137, 761–774 (2017). https://doi.org/10.1016/j.energy.2017.05.117

    Article  Google Scholar 

  36. Farooqui, A.; Bose, A.; Ferrero, D.; Llorca, J.; Santarelli, M.: Techno-economic and exergetic assessment of an oxy-fuel power plant fueled by syngas produced by chemical looping CO2 and H2O dissociation. J. CO2 Util. 27, 500–517 (2018). https://doi.org/10.1016/j.jcou.2018.09.001

    Article  Google Scholar 

  37. Han, Y.; Cai, L.; Xiang, Y.; Guan, Y.; Liu, W.; Yu, L.; Liang, Y.: Numerical study of mixed working fluid in an original oxy-fuel power plant utilizing liquefied natural gas cold energy. Int. J. Greenhouse Gas Control 78, 413–419 (2018). https://doi.org/10.1016/j.ijggc.2018.09.013

    Article  Google Scholar 

  38. Ziółkowski, P.; Zakrzewski, W.; Kaczmarczyk, O.; Badur, J.: Thermodynamic analysis of the double Brayton cycle with the use of oxy combustion and capture of CO2. Arch. Thermodyn. 34, 23–38 (2013). https://doi.org/10.2478/aoter-2013-0008

    Article  Google Scholar 

  39. Weiland, N.T.; White, C.W.: Techno-economic analysis of an integrated gasification direct-fired supercritical CO2 power cycle. Fuel 212, 613–625 (2018). https://doi.org/10.1016/j.fuel.2017.10.022

    Article  Google Scholar 

  40. Crespi, F.; Gavagnin, G.; Sánchez, D.; Martínez, G.S.: Supercritical carbon dioxide cycles for power generation: a review. Appl. Energy 195, 152–183 (2017). https://doi.org/10.1016/j.apenergy.2017.02.048

    Article  Google Scholar 

  41. Zhao, Y.; Zhao, L.; Wang, B.; Zhang, S.; Chi, J.; Xiao, Y.: Thermodynamic analysis of a novel dual expansion coal-fueled direct-fired supercritical carbon dioxide power cycle. Appl. Energy 217, 480–495 (2018). https://doi.org/10.1016/j.apenergy.2018.02.088

    Article  Google Scholar 

  42. Crespi, F.; Gavagnin, G.; Sánchez, D.; Martínez, G.S.: Analysis of the thermodynamic potential of supercritical carbon dioxide cycles: a systematic approach. J. Eng. Gas Turbin. Power 140, 051701 (2017). https://doi.org/10.1115/1.4038125

    Article  Google Scholar 

  43. Strakey, P.A.: Oxy-combustion flame fundamentals for supercritical CO2 power cycles. In: The 6th International Supercritical CO2 Power Cycles Symposium (2018)

  44. Liu, C.Y.; Chen, G.; Sipöcz, N.; Assadi, M.; Bai, X.S.: Characteristics of oxy-fuel combustion in gas turbines. Appl. Energy 89, 387–394 (2012). https://doi.org/10.1016/j.apenergy.2011.08.004

    Article  Google Scholar 

  45. Guan, Y.; Han, Y.; Wu, M.; Liu, W.; Cai, L.; Yang, Y.; Xiang, Y.; Chen, S.: Simulation study on the carbon capture system applying LNG cold energy to the O2/H2O oxy-fuel combustion. Nat. Gas Ind. B 5, 270–275 (2018). https://doi.org/10.1016/j.ngib.2017.11.011

    Article  Google Scholar 

  46. Liu, H.; Yao, H.; Yuan, X.; Xu, X.; Fan, Y.; Ando, T.; Okazaki, K.: Efficient desulfurization in O2/CO2 combustion: depedence on combustion conditions and sorbent properties. Chem. Eng. Commun. 199, 991–1011 (2012). https://doi.org/10.1080/00986445.2011.633288

    Article  Google Scholar 

  47. Han, S.H.; Lee, Y.S.; Cho, J.R.; Lee, K.H.: Efficiency analysis of air-fuel and oxy-fuel combustion in a reheating furnace. Int. J. Heat Mass Transf. 121, 1364–1370 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.110

    Article  Google Scholar 

  48. Shakeel, M.R.; Sanusi, Y.S.; Mokheimer, E.M.A.: Numerical modeling of oxy-methane combustion in a model gas turbine combustor. Appl. Energy 228, 68–81 (2018). https://doi.org/10.1016/j.apenergy.2018.06.071

    Article  Google Scholar 

  49. Kayadelen, H.K.; Ust, Y.: Prediction of equilibrium products and thermodynamic properties in H2O injected combustion for CαHβOγNδ type fuels. Fuel 113, 389–401 (2013). https://doi.org/10.1016/j.fuel.2013.05.095

    Article  Google Scholar 

  50. Gonca, G.: Investigation of the influences of steam injection on the equilibrium combustion products and thermodynamic properties of bio fuels (biodiesels and alcohols). Fuel 144, 244–258 (2015). https://doi.org/10.1016/j.fuel.2014.12.032

    Article  Google Scholar 

  51. Kayadelen, H.K.: Effect of natural gas components on its flame temperature, equilibrium combustion products and thermodynamic properties. J. Nat. Gas Sci. Eng. 45, 456–473 (2017). https://doi.org/10.1016/j.jngse.2017.05.023

    Article  Google Scholar 

  52. Kayadelen, H.K.; Ust, Y.: Thermoenvironomic evaluation of simple, intercooled, STIG, and ISTIG cycles. Int. J. Energy Res. 42, 3780–3802 (2018). https://doi.org/10.1002/er.4101

    Article  Google Scholar 

  53. Kayadelen, H.K.; Ust, Y.: Thermodynamic, environmental and economic performance optimization of simple, regenerative, STIG and RSTIG gas turbine cycles. Energy 121, 751–771 (2017). https://doi.org/10.1016/j.energy.2017.01.060

    Article  Google Scholar 

  54. Ozsari, I.; Ust, Y.: Effect of varying fuel types on oxy-combustion performance. Int. J. Energy Res. (2019). https://doi.org/10.1002/er.4868

    Article  Google Scholar 

  55. Kayadelen, H.K.: A multi-featured model for estimation of thermodynamic properties, adiabatic flame temperature and equilibrium combustion products of fuels, fuel blends, surrogates and fuel additives. Energy 143, 241–256 (2018). https://doi.org/10.1016/j.energy.2017.10.106

    Article  Google Scholar 

  56. Demirbas, A.: Methane Gas Hydrate. Springer, London (2010)

    Book  Google Scholar 

  57. Gas Composition Transition Agency Report 2013 (2013)

  58. Ferguson, C.R.: Internal combustion engines: applied thermosciences (1986)

  59. Chase, M.W.; Davies, C.A.; Downey, J.R.; Frurip, D.J.; McDonald, R.A.; Syverud, A.N.: In Janaf thermochemical tables. Third edition. vol. 14 (1985)

  60. Turns, S.R.: An Introduction to Combustion: Concepts and Applications. WCB/McGraw-Hill, Boston (2012)

    Google Scholar 

  61. Dostal, V.: A supercritical carbon dioxide cycle for next generation nuclear reactors (2004)

Download references

Acknowledgements

This work is compiled from the first author’s unpublished PhD dissertation. We would like to thank the Turkish Academy of Sciences (TUBA-GEBIP) and The Scientific and Technological Research Council of Turkey (TUBITAK) for their support for graduate students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Ozsari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozsari, I., Ust, Y. & Kayadelen, H.K. Comparative Energy and Emission Analysis of Oxy-Combustion and Conventional Air Combustion. Arab J Sci Eng 46, 2477–2492 (2021). https://doi.org/10.1007/s13369-020-05130-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05130-0

Keywords

Navigation