Skip to main content
Log in

Performance of Cladophora fracta for Bioaccumulation of Critical Raw Materials from Mine Gallery Waters

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

We investigated the accumulation of critical raw materials (CRMs) in macroalga (green alga Cladophora fracta) in mine gallery water with the aim of presentation of the possibility of using the algae as a bioaccumulator of CRMs. The CRMs investigated in the present study were lanthanum (La), vanadium (V), tungsten (W), scandium (Sc), bismuth (Bi), antimony (Sb), gallium (Ga) and cobalt (Co). The highest concentrations of La, V, W, Sc, Bi, Sb, Ga and Co were determined as 3.16 ± 0.15, 22 ± 1.0, 2.0 ± 0.1, 2.4 ± 0.12, 0.21 ± 0.01, 2.47 ± 0.13, 1.4 ± 0.07 and 7.28 ± 0.35 mg/kg, respectively. Bioconcentration factor values followed the order of La > V>W > Ga > Sb > Bi > Co > Sc. Also, metal pollution index (MPI) is used in order to identify the degree of pollution of C. fracta. The MPI values calculated were between 1.09 and 2.2. As a result, it was determined that C. fracta highly accumulated the CRMs from the mine gallery water and was a good bioaccumulator in remediation technology. In this way, it is possible to minimize or eliminate the environmental risks of the materials in the gallery waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Usman, A.; Solomon, S.G.; Okayi, R.G.: Some physico-chemical parameters and macro-element of Lake Alau, North East Nigeria. Niger. J. Fish. Aquar. 2, 24–36 (2014)

    Google Scholar 

  2. He, X.; Xie, C.; Ma, Y.; Wang, L.; He, X.; Shi, W.; Liu, X.; Zhang, Z.: Size-dependent toxicity of ThO2 nanoparticles to green algae Chlorella pyrenoidosa. Aquat. Toxicol. 209, 113–120 (2019)

    Google Scholar 

  3. Kamau, J.N.; Gachanja, A.; Ngila, C.; Kazungu, J.M.; Zhai, M.: The seasonal influence on the spatial distribution of dissolved selected metals in Lake Naivasha, Kenya. Phys. Chem. Earth 67–69, 111–116 (2014)

    Google Scholar 

  4. Kanat, G.; Ikizoglu, B.; Erguven, G.O.; Akgun, B.: Determination of pollution and heavy metal fractions in golden horn sediment sludge. Pol. J. Environ. Stud. 27, 2605–2611 (2018)

    Google Scholar 

  5. Emmanuel, B.; Makhatha, E.; Nheta, W.: A review of lanthanum nanoparticles impregnated compound arsenic fixation behaviour in copper aqueous solution. Energy Procedia 157, 966–971 (2019)

    Google Scholar 

  6. Akkoyunlu, A.; Avşar, Y.; Erguven, G.O.: Hazardous waste management in Turkey. J. Hazard. Toxic Radioact. Waste 21, 1–7 (2017)

    Google Scholar 

  7. Gilsbach, L.; Schütte, P.; Franken, G.: Applying water risk assessment methods in mining: current challenges and opportunities. Water Res. Ind. 22, 1–15 (2019)

    Google Scholar 

  8. Hansson, S.V.; Høye, T.T.; Bach, L.; Mielec, C.; Mosbech, A.; Søndergaard, J.: Spiders as biomonitors of metal pollution at Arctic mine sites: the case of the Black Angel Pb–Zn–mine, Maarmorilik, West Greenland. Ecol. Indic. 106, 105489 (2019)

    Google Scholar 

  9. Cánovas, C.R.; Chapron, S.; Arrachart, G.; Pellet-Rostaing, S.: Leaching of rare earth elements (REEs) and impurities from phosphogypsum: a preliminary insight for further recovery of critical raw materials. J. Clean. Prod. 219, 225–235 (2019)

    Google Scholar 

  10. European Commission: Study on the Review of the List of Critical Raw Materials Critical Raw Materials Factsheets Publications Office of the European Union, Luxembourg (2017)

  11. Ferro, P.; Bonollo, F.: Materials selection in a critical raw materials perspective. Mater. Des. 177, 1–9 (2019)

    Google Scholar 

  12. Pinto, J.; Costa, M.; Leite, C.; Borges, C.; Coppola, F.; Henriques, B.; Monteiro, R.; Russo, T.; Di Cosmo, A.; Soares, A.M.V.M.; Polese, G.; Pereira, E.; Freitas, R.: Ecotoxicological effects of lanthanum in Mytilus galloprovincialis: biochemical and histopathological impacts. Aquat. Toxicol. 211, 181–192 (2019)

    Google Scholar 

  13. Yu, Q.; Ning, S.; Zhang, W.; Wang, X.; Wei, Y.: Recovery of scandium from sulfuric acid solution with a macro porous TRPO/SiO2-P adsorbent. Hydrometallurgy 181, 74–81 (2018)

    Google Scholar 

  14. Zhang, Y.; Wang, C.; Ma, B.; Jie, X.; Xing, P.: Extracting antimony from high arsenic and gold-containing stibnite ore using slurry electrolysis. Hydrometallurgy 186, 284–291 (2019)

    Google Scholar 

  15. Long, X.; Wang, X.; Guo, X.; He, M.: A review of removal technology for antimony in aqueous solution. J. Environ. Sci 90, 189–204 (2020)

    Google Scholar 

  16. Lassner, E.; Schubert, W.-D.: Tungsten Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds. Kluwer, Boston (1999)

    Google Scholar 

  17. Strigul, N.; Koutsospyros, A.; Arienti, P.; Christodoulatos, C.; Dermates, D.; Braida, W.: Effects of tungsten on environmental systems. Chemosphere 61, 248–258 (2005)

    Google Scholar 

  18. Steenstra, P.; Strigul, S.; Harrison, J.: Tungsten in Washington State surface waters. Chemosphere 242, Article 125151 (2020)

  19. Kearns, J.; Turner, A.: An evaluation of the toxicity and bioaccumulation of bismuth in the coastal environment using three species of macroalga. Environ. Pollut. 208, 435–441 (2016)

    Google Scholar 

  20. Jensen, H.; Gaw, S.; Lehto, N.J.; Hassall, L.; Robinson, B.H.: The mobility and plant uptake of gallium and indium, two emerging contaminants associated with electronic waste and other sources. Chemosphere 209, 675–684 (2018)

    Google Scholar 

  21. Zhang, K.; Liu, Z.; Liu, Y.; Cao, H.; Zhu, W.: Recovery of gallium from strong acidic sulphate leach solutions of zinc refinery residues using a novel phosphate ester extractant. Hydrometallurgy 185, 250–256 (2019)

    Google Scholar 

  22. Peng, H.: A literature review on leaching and recovery of vanadium. J. Environ. Chem. Eng. 7, 103313 (2019)

    Google Scholar 

  23. Dahiya, S.; Tripathi, R.M.; Hegde, A.G.: Biosorption of heavy metals and radionuclide from aqueous solutions by pre-treated arca shell biomass. J. Hazard. Mater. 150, 376–386 (2008)

    Google Scholar 

  24. Donaldson, J.D.; Beyersmann, D.: Cobalt and cobalt compounds. Ullmann’s Encyclopedia of Industrial Chemistry (2012)

  25. León, M.F.G.; Dewulf, J.: Data quality assessment framework for critical raw materials. The case of cobalt. Resour. Conserv. Recycl. 157, Article 104564 (2020)

  26. Xu, H.; Yan, Z.; Cai, H.; Yu, G.; Yang, L.; Jiang, H.: Heterogeneity in metal binding by individual fluorescent components in a eutrophic algae-rich lake. Ecotoxicol. Environ. Safe 98, 266–272 (2013)

    Google Scholar 

  27. Pawlik-Skowrońska, B.: Phytochelatin production in freshwater algae Stigeoclonium in response to heavy metals contained in mining water; effects of some environmental factors. Aquat. Toxicol. 52, 241–249 (2001)

    Google Scholar 

  28. Kamala-Kannan, S.; Batvari, B.P.D.; Lee, K.J.; Kannan, N.; Krishnamoorthy, R.; Shanthi, K.; Jayaprakash, M.: Assessment of heavy metals (Cd, Cr and Pb) in water, sediment and seaweed (Ulva lactuca) in the Pulicat Lake, South East India. Chemosphere 71, 1233–1240 (2008)

    Google Scholar 

  29. Chmielewská, E.; Medved’, J.: Bioaccumulation of heavy metals by green algae Cladophora glomerata in a refinery sewage lagoon. Croat. Chem. Acta 74, 135–145 (2001)

    Google Scholar 

  30. Keeney, W.L.; Breck, W.G.; Vanloon, G.W.; Page, J.A.: The determination of trace metals in Cladophora glomerata as a potential biological monitor. Water Res. 10, 981–984 (1976)

    Google Scholar 

  31. Lill, J.-O.; Salovius-Laurén, S.; Harju, L.; Rajander, J.; Saarela, K.E.; Lindroos, A.; Heselius, S.-J.: Temporal changes in elemental composition in decomposing filamentous algae (Cladophora glomerata and Pilayella littoralis) determined with PIXE and PIGE. Sci. Total Environ. 414, 646–652 (2012)

    Google Scholar 

  32. Akgul, B.: Geochemical associations between fluorite mineralization and A-type shoshonitic magmatism in the Keban-Elazig area, East Anatolia. Turk. J. Afr. Earth Sci. 111, 222–230 (2015)

    Google Scholar 

  33. Seeliger, T.C.; Pernicka, E.; Wagner, G.A.; Begemann, F.; Schmitt-Strecker, S.; Eibner, C.; Öztunalı, Ö.; Baranyi, I.: Archäometallurgische untersuchungen in nord-und ostanatolien. Jahrbuch des Römisch-Germanisches Zentralmuseum 32, 597–659 (1985)

    Google Scholar 

  34. Sasmaz, M.; Arslan Topal, E.I.; Öbek, E.; Sasmaz, A.: The potential of Lemna gibba L. and Lemna minor L. to remove Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey. J. Environ. Manag. 163, 246–253 (2015)

    Google Scholar 

  35. Usero, J.; González-Regalado, E.; Gracia, I.: Trace metals in the bivalve mollusc Chamelea gallina from the Atlantic coast of southern Spain. Oceanogr. Lit. Rev. 10, 1058 (1996)

    Google Scholar 

  36. Abdel-Khalek, A.A.; Elhaddad, E.; Mamdouh, S.; Marie, M.-A.S.: Assessment of metal pollution around sabal drainage in River Nile and its impacts on bioaccumulation level, metals correlation and human risk hazard using Oreochromis niloticus as a bioindicator. Turk. J. Fish. Aquat. Sci. 16, 227–239 (2016)

    Google Scholar 

  37. Ahmed, A.S.S.; Sultana, S.; Habib, A.; Ullah, H.; Musa, N.; Hossain, M.B.; Rahman, M.; Sarker, M.: Bioaccumulation of heavy metals in some commercially important fishes from a tropical river estuary suggests higher potential health risk in children than adults. PLoS 14, 1–21 (2019)

    Google Scholar 

  38. Riget, F.; Johansen, P.; Asmund, G.: Influence of length on element concentrations in blue mussels (Mytilus edulis). Mar. Pollut. Bull. 32, 745–751 (1996)

    Google Scholar 

  39. Palmer, A.S.; Snape, I.; Stark, J.S.; Johnstone, G.J.; Townsend, A.T.: Baseline metal concentrations in Paramoera walkeri from East Antarctica. Mar. Pollut. Bull. 52, 1441–1449 (2006)

    Google Scholar 

  40. Runcie, J.W.; Riddle, M.J.: Metal concentrations in macroalgae from East Antarctica. Mar. Pollut. Bull. 49, 1114–1119 (2004)

    Google Scholar 

  41. Feng, R.; Wei, C.; Tu, S.; Ding, Y.; Wang, R.; Guo, J.: The uptake and detoxification of antimony by plants: a review. Environ. Exp. Bot. 96, 28–34 (2013)

    Google Scholar 

  42. Baroni, F.; Boscagli, A.; Protano, G.; Riccobono, F.: Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Environ. Pollut. 109, 347–352 (2000)

    Google Scholar 

  43. Culioli, J.L.; Fouquoire, A.; Calendini, S.; Mori, C.; Orsini, A.: Trophic transfer of arsenic and antimony in a freshwater ecosystem: a field study. Aquat. Toxicol. 94, 286–293 (2009)

    Google Scholar 

  44. Li, J.; Zheng, B.; He, Y.; Zhou, Y.; Chen, X.; Ruan, S.; Yang, Y.; Dai, C.; Tang, L.: Antimony contamination, consequences and removal techniques: a review. Ecotoxicol. Environ. Safe 156, 125–134 (2018)

    Google Scholar 

  45. Stark, J.S.; Snape, I.; Riddle, M.J.: Abandoned Antarctic waste disposal sites: monitoring remediation outcomes and limitations at Casey Station. Ecol. Manag. Restor. 7, 21–31 (2006)

    Google Scholar 

  46. Bustamante, P.; Miramand, P.: Subcellular and body distributions of 17 trace elements in the variegated scallop Chlamys varia from the French coast of the Bay of Biscay. Sci. Total Environ. 337, 59–73 (2005)

    Google Scholar 

  47. BA, Bioaccumulation: Bio-concentration Criteria and Chemical Risk Assessment (2019. https://www.chemsafetypro.com/Topics/CRA/Bioconcentration_Factor_BCF.html. Access 20 Dec 2019

  48. Liang, T.; Li, K.; Wang, L.: State of rare earth elements in different environmental components in mining areas of China. Environ. Monit. Assess. 186, 1499–1513 (2014)

    Google Scholar 

  49. Ueki, T.; Sakamoto, Y.; Yamaguchi, N.; Michibata, H.: Bioaccumulation of copper ions by Escherichia coli expressing vanabin genes from the vanadium-rich ascidian Ascidia sydneiensis samea. Appl. Environ. Microbiol. 69, 6442–6446 (2003)

    Google Scholar 

  50. Bevers, L.E.; Hagedoorn, P.-L.; Hagen, W.R.: The bioinorganic chemistry of tungsten. Coord. Chem. Rev. 253, 269–290 (2009)

    Google Scholar 

  51. Jamil, T.; Lias, K.; Norsila, D.; Syafinaz, N.S.: Assessment of heavy metal contamination in squid (Loligo spp.) tissues of Kedah-Perlis waters, Malaysia. Malays. J. Anal. Sci. 18, 195–203 (2014)

    Google Scholar 

  52. Ogunola, O.S.; Onada, O.A.; Falaye, A.E.: Ecological risk evaluation of biological and geochemical trace metals in okrika estuary. Int. J. Environ. Res. 11, 149–173 (2017)

    Google Scholar 

  53. Luczynska, J.; Paszczyk, B.; Luczynski, M.J.: Fish as a bioindicator of heavy metals pollution in aquatic ecosystem of Pluszne Lake, Poland, and risk assessment for consumer’s health. Ecotoxicol. Environ. Safe 153, 60–67 (2018)

    Google Scholar 

  54. Oyebamiji, A.; Amanambu, A.; Zafar, T.; Adewumi, A.J.P.; Akinyemi, D.S.: Expected impacts of active mining on the distribution of heavy metals in soils around Iludun-Oro and its environs, Southwestern Nigeria. J. Cogent Environ. Sci. 4, 1–21 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Topal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topal, M., Öbek, E. & Arslan Topal, E.I. Performance of Cladophora fracta for Bioaccumulation of Critical Raw Materials from Mine Gallery Waters. Arab J Sci Eng 45, 4531–4539 (2020). https://doi.org/10.1007/s13369-020-04522-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04522-6

Keywords

Navigation