Skip to main content
Log in

Differential Electrolytic Potentiometry: a Detector in the Flow Injection Analysis of Cyanide Using Silver Electrodes Modified with Carbon Nanotubes

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Differential electrolytic potentiometry (DEP) using silver electrodes coated with carbon nanotubes was applied as a detector in a flow injection analysis of cyanide. The direct current differential electrolytic potentiometry (dc-DEP) and the mark-space bias differential electrolytic potentiometry (m.s.b. DEP) both were applied as indicating systems. The parameters that give the best signal were investigated and optimized. A current density of \(17 \, \upmu \hbox {A cm}^{-2}\) and a percentage bias of 2.8% were found to be optimum in case of dc-DEP and m.s.b. DEP, respectively. The optimum flow rate of both the analyte and the supporting electrolyte was found to be of \(85 \, \upmu \hbox {L s}^{-1}\) using a coil length of 45 cm. In case of dc-DEP, a linear range of 1–65 ppm of KCN with a detection limit of 0.5 ppm and a relative standard deviation of 2.1% was observed. In case of m.s.b. DEP, a linear range of 1–65 ppm of KCN with a detection limit of 0.35 ppm and a relative standard deviation of 1.5% was observed. The proposed DEP-FIA methods are computer controlled, fast, sensitive, inexpensive and require low consumption of reagents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Randviir, E.P.; Banks, C.E.: The latest developments in quantifying cyanide and hydrogen cyanide. Trends Anal. Chem. 64, 75–85 (2015)

    Article  Google Scholar 

  2. Abulkibash, A.M.; Fraihat, S.M.: Sequential injection spectrophotometric determination of cyanide. J. Flow Inject. Anal. 24, 17–21 (2007)

    Google Scholar 

  3. Saleh, T.A.; Abulkibash, A.M.S.: Differential electrolytic potentiometric detector in flow injection analysis for cyanide determination. J. Flow Inject. Anal. 24, 9–12 (2007)

    Google Scholar 

  4. Duval, D.L.; Fritz, J.S.; Gjerde, D.T.: Indirect determination of cyanide by single-column ion chromatography. Anal. Chem. 54, 830–832 (1982)

    Article  Google Scholar 

  5. Hilton, D.F.; Haddad, P.R.: Determination of metal-cyano complexes by reversed-phase ion-interaction high-performance liquid chromatography and its application to the analysis of precious metals in gold processing solutions. J. Chromatogr. A 361, 141–150 (1986)

    Article  Google Scholar 

  6. Nonomura, M.: Indirect determination of cyanide compounds by ion chromatography with conductivity measurement. Anal. Chem. 59, 2073–2076 (1987)

    Article  Google Scholar 

  7. Grigirova, B.; Wright, S.A.; Josephson, M.: Separation and determination of stable metallo–cyanide complexes in metallurgical plant solutions and effluents by reversed-phase ion-pair chromatography. J. Chromatogr. 410, 419–426 (1987)

    Article  Google Scholar 

  8. Fraihat, S.; Abulkibash, A.M.: Differential Electrolytic Potentiometry a Detector in Flow Injection Analysis for Cyanide Determination. J. Mater. Sci. Eng. A1, 248–252 (2011)

    Google Scholar 

  9. Nonomura, M.; Hobo, T.: Iion chromatographic determination of cyanide compounds by chloramine-T and conductivity measurement. J. Chromatogr. 465, 395–401 (1989)

    Article  Google Scholar 

  10. Giroux, L.D.; Barkley, J.: Separation of metal-cyanide complexes by reversed-phase ion-interaction high-performance liquid chromatography. Can. J. Chem. 72, 269–273 (1994)

    Article  Google Scholar 

  11. Huang, Q.; Paull, B.; Haddad, P.R.: Optimisation of selectivity in the separation of metallo-cyanide complexes by ion-interaction liquid chromatography. J. Chromatogr. A 770, 3–11 (1997)

    Article  Google Scholar 

  12. Giuriti, C.; Cavalli, S.; Gorni, A.; Badocco, D.; Pastore, P.: Ion chromatographic determination of sulfide and cyanide in real matrices by using pulsed amperometric detection on a silver electrode. J. Chromatogr. A 1023, 105–112 (2004)

    Article  Google Scholar 

  13. Al-ghannam, S.M.; Al-olyan, A.M.: Differential electrolytic potentiometric titration of vitamin C in pharmaceutical preparations. J. Food Drug Anal. 13, 295–300 (2005)

    Google Scholar 

  14. Miralles, E.; Compano, R.; Granados, M.; Prat, M.D.: Determination of metal-cyanide complexes by ion-interaction chromatography with fluorimetric detection. Anal. Chim. Acta 403, 197–204 (2000)

    Article  Google Scholar 

  15. Goksel, F.S.; Aydin, A.; Saracoglu, A.S.: A new fluorometric method for the determination of cyanide. Chim. Acta Turc. 14, 331–352 (1986)

    Google Scholar 

  16. Frant, M.S.; Ross, J.W.; Riseman, J.H.: Electrode indicator technique for measuring low levels of cyanide. Anal. Chem. 44, 2227–2230 (1972)

    Article  Google Scholar 

  17. Neshkova, M.T.; Pancheva, E.M.: Cyanide ion-selective electrodes based on thin electroplated membranes of silver chalcogenides Part I. Membrane preparation and characterization. Anal. Chim. Acta 242, 73–83 (1991)

    Article  Google Scholar 

  18. Clesceri, L.S.; Greenberg, A.E.; Eaton, A.D.: Standard Methods for the Examination of Water and Wastewater, 20th edn. American Public Health Association, Washington (1998)

    Google Scholar 

  19. Nagashima, K.; Horie, H.; Suzuki, S.: Continuous determination of cyanide in waste water with ion selective electrode and gas–liquid separation. Anal. Sci. 2, 271–274 (1986)

    Article  Google Scholar 

  20. Amine, A.; Alafandy, M.; Kauffmann, J.M.; Pekli, M.N.: Cyanide determination using an amperometric biosensor based on cytochrome oxidase inhibition. Anal. Chem. 67, 2822–2827 (1995)

    Article  Google Scholar 

  21. Schilt, A.A.: Colorimetric determination of cyanide tris (1, 10- phenanthroline)-iron (II) ion as a selective and sensitive reagent. Anal. Chem. 30, 1409–1411 (1958)

    Article  Google Scholar 

  22. Lambert, J.L.; Manzo, D.J.: Spectrophotometric determination of cyanide ion with tris (1,10- phenanthroline)-iron (II)-triiodide ion association reagent. Anal. Chem. 40, 1354–1355 (1968)

    Article  Google Scholar 

  23. Lambert, J.L.; Ramasamy, J.J.; Paukstelis, V.: Stable reagents for the colorimetric determination of cyanide by modified Konig reactions. Anal. Chem. 47, 916–918 (1975)

    Article  Google Scholar 

  24. Meeussen, J.C.L.; Temminhoff, E.J.M.; Keizer, M.G.; Novozamsky, I.: Spectrophotometric determination of total cyanide, iron-cyanide complexes, free cyanide and thiocyanate in water by a continuous-flow system. Analyst 114, 959–963 (1989)

    Article  Google Scholar 

  25. Abdennabi, A.M.S.; Koken, M.E.: Differential Electrolytic potentiometry, a detector in flow injection analysis for precipitation reactions. Talanta 46, 639–646 (1998)

    Article  Google Scholar 

  26. Ruzicka, J.; Hansen, E.H.: Flow Injection Analysis, 2nd edn. Wiley, New York (1988)

    Google Scholar 

  27. Muataz, A.A.; Ahmadun, F.; Guan, C.; Mahdi, E.; Rinaldi, A.: Effect of reaction temperature on the production of carbon nanotubes. NANO 1, 251–257 (2006)

    Article  Google Scholar 

  28. Amro, A.N.; Abulkibash, A.M.; Atieh, M.A.: Carbon nanotubes as nano-sensor for differential electrolytic micropotentiometry. AJAC 31, 879–890 (2014)

    Article  Google Scholar 

  29. Tirfoin, R.; Aldridge, S.: A molecular ‘traffic light’: highly selective cyanide sensing in aqueous media by a CpFe(indenyl)-functionalized borane. Dalton Trans. 42, 12836–12839 (2013)

    Article  Google Scholar 

  30. Hajizadeh, S.; Farhadi, K.; Forough, M.; Sabzi, R.E.: Silver nanoparticles as a cyanide colorimetric sensor in aqueous media. Anal. Methods 3, 2599–2603 (2011)

    Article  Google Scholar 

  31. Chamjangali, M.A.; Soltanpanah, S.; Bagherian, G.; Amin, A.H.: Development of a simple and inexpensive optical absorption one-shot sensor membrane for detection and determination of cyanide ions in water samples. J. Chin. Chem. Soc. Taip. 58, 118–125 (2011)

    Article  Google Scholar 

  32. Kim, M.H.; Kim, S.; Jang, H.H.; Yi, S.; Seo, S.H.; Han, M.S.: A gold nanoparticle-based colorimetric sensing ensemble for the colorimetric detection of cyanide ion in aqueous solution. Tetrahedron Lett. 51, 4712–4716 (2010)

    Article  Google Scholar 

  33. Kaur, K.; Mittal, S.K.; Kumar, A.S.; Kumar, A.; Kumar, S.: Viologen substituted anthrone derivatives for selective detection of cyanide ions using voltammetry. Anal. Methods 5, 5565–5571 (2013)

    Article  Google Scholar 

  34. Mannel-Croise, C.; Zelder, F.: Complex samples cyanide detection with immobilized corrinoids. ACS Appl. Mater. Interfaces 4, 725–729 (2012)

    Article  Google Scholar 

  35. Ding, G.; Zhou, H.; Xu, J.; Lu, X.: Electrofluorochromic detection of cyanide anions using a benzothiadiazole-containing conjugated copolymer. Chem. Commun. 50, 655–657 (2014)

    Article  Google Scholar 

  36. Ghanavati, M.; Azad, R.R.; Mousavi, S.A.: Amperometric inhibition biosensor for the determination of cyanide. Sens. Actuators B Chem. 190, 858–864 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousa Yaser Amayreh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amayreh, M.Y., Abulkibash, A.M. Differential Electrolytic Potentiometry: a Detector in the Flow Injection Analysis of Cyanide Using Silver Electrodes Modified with Carbon Nanotubes. Arab J Sci Eng 42, 4445–4451 (2017). https://doi.org/10.1007/s13369-017-2570-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2570-7

Keywords

Navigation