Skip to main content
Log in

Optimization Study of Operation Parameters for Extracting \(\hbox {Cu}^{2+}\) from Sulfuric Solution Containing \(\hbox {Co}^{2+}\) with LIX984N in a Laminar Microchip

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Copper and cobalt usually coexist in the leachate of waste lithium ion batteries, sea nodules and other copper ore or by-product. Conventional methods for the separation of copper and cobalt hardly avoid some defects, such as longer extraction time, co-extraction and too many stages. In this paper, a microfluidic extraction procedure for simultaneously separating copper \((\hbox {Cu}^{2+})\) and cobalt \((\hbox {Co}^{2+})\) ions in a microchannel was investigated. In addition, some key operation parameters, such as initial pH, volume flow rate and extractant concentration, were optimized by a method of response surface methodology (RSM). The result showed that under the optimized operation parameters of initial pH of 2.5, volume flow rate of \(0.035~\hbox {mL}~\hbox {min}^{-1}\) and extractant concentration of 17.36%, the extraction rate of copper could be as high as 96.73%, with a low cobalt extraction rate, which was only 2.41%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, F.; He, F.; Zhao, J.; et al.: Extraction and separation of cobalt(II), copper(II) and manganese(II) by Cyanex272, PC-88A and their mixtures. Sep. Purif. Technol. 93(3), 8–14 (2012)

    Article  Google Scholar 

  2. Sridhar, V.; Verma, J.K.: Extraction of copper, nickel and cobalt from the leach liquor of manganese-bearing sea nodules using LIX 984N and ACORGA M5640. Miner. Eng. 24(8), 959–962 (2011)

    Article  Google Scholar 

  3. Sahu, S.K.; Agrawal, A.; Pandey, B.D.; et al.: Recovery of copper, nickel and cobalt from the leach liquor of a sulphide concentrate by solvent extraction. Miner. Eng. 17(7–8), 949–951 (2004)

    Article  Google Scholar 

  4. Zhang, W.; Cui, C.; Yang, Y.: Mass transfer of copper(II) in hollow fiber renewal liquid membrane with different carriers. Chin. J. Chem. Eng. 18(2), 346–350 (2010)

    Article  Google Scholar 

  5. Lu, J.; Dreisinger, D.: Solvent extraction of copper from chloride solution I: extraction isotherms. Hydrometallurgy 137(5), 13–17 (2013)

    Article  Google Scholar 

  6. Liu, X.R.; Qiu, G.Z.; Hu, Y.H.: Degradation of Lix984N and its effect on interfacial emulsion. J. Cent. South Univ. 13(6), 668–672 (2006)

    Article  Google Scholar 

  7. Lu, J.; Dreisinger, D.: Two-stage countercurrent solvent extraction of copper from cuprous chloride solution: Cu(II) loading coupled with Cu(I) oxidation by oxygen and iron scrubbing. Hydrometallurgy 150, 41–46 (2014)

    Article  Google Scholar 

  8. Balesini, A.A.; Zakeri, A.; Razavizadeh, H.; et al.: Nickel solvent extraction from cold purification filter cakes of Angouran mine concentrate using LIX984N. Int. J. Miner. Metall. Mater. 20(11), 1029–1034 (2013)

    Article  Google Scholar 

  9. Liqing, L.I.; Hong, Z.; Cao, Z.; et al.: Recovery of copper(II) and nickel(II) from plating wastewater by solvent extraction. Chin. J. Chem. Eng. 19(6), 926–930 (2011)

    Article  Google Scholar 

  10. Zhang, W.; Cui, C.; Ren, Z.; et al.: Simultaneous removal and recovery of copper(II) from acidic wastewater by hollow fiber renewal liquid membrane with LIX984N as carrier. Chem. Eng. J. 157(1), 230–237 (2010)

    Article  Google Scholar 

  11. Yang, B.; Wang, C.; Li, D. et al.: Selective separation of copper and cadmium from zinc solutions by low current density electrolysis. Trans. Nonferrous. Met. Soc. China. 20(3), 533–536 (2010)

  12. Gharehbagh, F.S.; Mousavian, S.M.A.: Hydrodynamic characterization of mixer-settlers. J. Taiwan Inst. Chem. Eng. 40(3), 302–312 (2009)

    Article  Google Scholar 

  13. Javanshir, S.; Abdollahy, M.; Abolghasemi, H.: Drop size distribution in a mixer-settler reactor for the gold chloride/DBC system. Chem. Eng. Res. Des. 90(10), 1680–1686 (2012)

    Article  Google Scholar 

  14. Moreno, C.M.; Pérez-Correa, J.R.; Otero, A.: Dynamic modelling of copper solvent extraction mixer-settler units. Miner. Eng. 22(15), 1350–1358 (2009)

    Article  Google Scholar 

  15. Agrawal, A.; Manoj, M.K.; Kumari, S.; et al.: Extractive separation of copper and nickel from copper bleed stream by solvent extraction route. Miner. Eng. 21(15), 1126–1130 (2008)

    Article  Google Scholar 

  16. Sridhar, V.; Verma, J.K.; Kumar, S.A.: Selective separation of copper and nickel by solvent extraction using LIX984N. Hydrometallurgy 99(1), 124–126 (2009)

    Article  Google Scholar 

  17. Zhang, X.; Li, X.; Cao, H.; et al.: Separation of copper, iron(III), zinc and nickel from nitrate solution by solvent extraction using LK-C2. Sep. Purif. Technol. 70(3), 306–313 (2010)

    Article  Google Scholar 

  18. Korchinsky, W.J.; Ismail, A.M.: Mass-transfer parameters in rotating-disc contactors: influence of column diameter. J. Chem. Technol. Biotechnol. 43(43), 147–158 (1988)

    Google Scholar 

  19. Kadam, B.D.; Joshi, J.B.; Koganti, S.B.; et al.: Hydrodynamic and mass transfer characteristics of annular centrifugal extractors. Chem. Eng. Res. Des. 86(3), 233–244 (2008)

    Article  Google Scholar 

  20. Tamhane, T.V.; Joshi, J.B.; Mudali, U.K.; et al.: Axial mixing in annular centrifugal extractors. Chem. Eng. J. 207–208, 462–472 (2012)

    Article  Google Scholar 

  21. Liu, J.S.; Lan, Z.Y.; Qiu, G.Z.; et al.: Mechanism of crud formation in copper solvent extraction. J. Cent. South Univ. 9(3), 169–172 (2002)

    Article  Google Scholar 

  22. Priest, C.; Zhou, J.; Sedev, R.; et al.: Microfluidic extraction of copper from particle-laden solutions. Int. J. Miner. Process. 98(3–4), 168–173 (2011)

    Article  Google Scholar 

  23. Zhang, L.H.; Peng, J.H.; Ju, S.H.; et al.: Microfluidic solvent extraction and separation of cobalt and nickel. RSC Adv. 4(31), 16081–16086 (2014)

    Article  Google Scholar 

  24. Ciceri, D.; Mason, L.R.; Harvie, D.J.E.; et al.: Extraction kinetics of Fe(III) by di-(2-ethylhexyl) phosphoric acid using a Y–Y shaped microfluidic device. Chem. Eng. Res. Des. 92(3), 571–580 (2014)

    Article  Google Scholar 

  25. Rahimi, M.; Aghel, B.; Hatamifar, B.; et al.: CFD modeling of mixing intensification assisted with ultrasound wave in a T-type microreactor. Chem. Eng. Process. Process Intensif. 86, 36–46 (2014)

    Article  Google Scholar 

  26. Yin, S.; Zhang, L.; Peng, J.; et al.: Microfluidic solvent extraction of La(III) with 2-ethylhexyl phosphoric acid-2-ethylhexyl ester (P507) by a microreactor. Chem. Eng. Process. 91, 1–6 (2015)

    Article  Google Scholar 

  27. Yang, L.; Zhao, Y.; Su, Y.; et al.: An experimental study of copper extraction characteristics in a T-junction microchannel. Chem. Eng. Technol. 36(6), 985–992 (2013)

    Article  Google Scholar 

  28. Li, C.; Jiang, F.; Ju, S.; et al.: Separation of \(\text{ In }^{3+}\) and \(\text{ Fe }^{3+}\) from sulfate solutions using D2EHPA in a laminar microreactor. Can. Metall. Q. 54(4), 432–438 (2015)

    Article  Google Scholar 

  29. Kalil, S.J.; Maugeri, F.; Rodrigues, M.I.: Response surface analysis and simulation as a tool for bioprocess design and optimization. Process Biochem. 35(6), 539–550 (2000)

    Article  Google Scholar 

  30. Wang, Y.X.; Lu, Z.X.: Optimization of processing parameters for the mycelial growth and extracellular polysaccharide production by Boletus, spp. ACCC 50328. Process Biochem. 40(3–4), 1043–1051 (2005)

    Article  Google Scholar 

  31. Zhang, W.; Cui, C.; Yang, Y.: Mass transfer of copper(II) in hollow fiber renewal liquid membrane with different carriers. Chin. J. Chem. Eng. 18(2), 346–350 (2010)

    Article  Google Scholar 

  32. Miguel, E.R.D.S.; Aguilar, J.C.; Bernal, J.P.; et al.: Extraction of Cu(II), Fe(III), Ga(III), Ni(II), In(III), Co(II), Zn(II) and Pb(II) with LIX984 dissolved in n-heptane. Hydrometallurgy 47(1), 19–30 (1997)

    Article  Google Scholar 

  33. Panigrahi, S.; Parhi, P.K.; Sarangi, K.; et al.: A study on extraction of copper using LIX 84-I and LIX 622N. Sep. Purif. Technol. 70(1), 58–62 (2009)

    Article  Google Scholar 

  34. Kongolo, K.; Mwema, M.D.; Banza, A.N.; et al.: Cobalt and zinc recovery from copper sulfuric solution by solvent extraction. Miner. Eng. 16(12), 1371–1374 (2003)

    Article  Google Scholar 

  35. Huang, K.; Li, Q.W.; Chen, J.: Recovery of copper, nickel and cobalt from acidic pressure leaching solutions of low-grade sulfide flotation concentrates. Miner. Eng. 20(7), 722–728 (2007)

    Article  Google Scholar 

  36. Pradhan, S.; Devi, N.; Mishra, S.: Separation of copper and iron from chloride media using Cyanex 921 in kerosene. J. Cent. South Univ. 21(5), 1752–1755 (2014)

    Article  Google Scholar 

  37. Alguacil, F.J.; Cobo, A.: Solvent extraction with LIX 973N for the selective separation of copper and nickel. J. Chem. Technol. Biotechnol. 74(5), 467–471 (1999)

    Article  Google Scholar 

  38. Chakravarti, A.K.; Chowdhury, S.B.; Mukherjee, D.C.: Liquid membrane multiple emulsion process of separation of copper(II) from waste waters. Colloids Surf. A Physicochem. Eng. Asp. 166(1–3), 7–25 (2000)

    Article  Google Scholar 

  39. Sengupta, B.; Sengupta, R.; Subrahmanyam, N.: Copper extraction into emulsion liquid membranes using LIX 984N-C. Hydrometallurgy 81(1), 67–73 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-hua Ju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Bq., Jiang, F., Peng, Jh. et al. Optimization Study of Operation Parameters for Extracting \(\hbox {Cu}^{2+}\) from Sulfuric Solution Containing \(\hbox {Co}^{2+}\) with LIX984N in a Laminar Microchip. Arab J Sci Eng 43, 2145–2153 (2018). https://doi.org/10.1007/s13369-017-2495-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2495-1

Keywords

Navigation