Skip to main content
Log in

Quantitative Surface Analysis of a Binary Drug Mixture—Suppression Effects in the Detection of Sputtered Ions and Post-Ionized Neutrals

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

A systematic mass spectrometric study of two of the most common analgesic drugs, paracetamol and ibuprofen, is reported. The drugs were studied by means of secondary ion mass spectrometry (SIMS) and secondary neutral mass spectrometry (SNMS) using laser post-ionization (LPI) both in pure samples and in a two-component mixture. Ion suppression within the two-component system observed in SIMS mode is ameliorated using LPI under room temperature analysis. However, suppression effects are apparent in LPI mode on performing the analysis at cryogenic temperatures, which we attribute to changes in the desorption characteristics of sputtered molecules, which influences the subsequent post-ionization efficiency. This suggests different mechanisms of ion suppression in SIMS and LPI modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ninomiya, S., Ichiki, K., Yamada, H., Nakata, Y., Seki, T., Aoki, T., Matsuo, J.: Precise and fast secondary ion mass spectrometry depth profiling of polymer materials with large Ar cluster ion beams. Rapid Commun. Mass Spectrom. 23, 1601–1606 (2009)

    Article  CAS  Google Scholar 

  2. Brunelle, A., Touboul, D., Laprévote, O.: Biological tissue imaging with time-of-flight secondary ion mass spectrometry and cluster ion sources. J. Mass Spectrom. 40, 985–999 (2005)

    Article  CAS  Google Scholar 

  3. McDonnell, L.A., Piersma, S.R., Altelaar, A.F.M., Mize, T.H., Luxembourg, S.L., Verhaert, P.D., van Minnen, J., Heeren, R.M.A.: Subcellular imaging mass spectrometry of brain tissue. J. Mass Spectrom. 40, 160–168 (2005)

    Article  CAS  Google Scholar 

  4. Bich, C., Havelund, R., Moellers, R., Touboul, D., Kollmer, F., Niehuis, E., Gilmore, I.S., Brunelle, A.: Argon cluster ion source evaluation on lipid standards and rat brain tissue samples. Anal. Chem. 85, 7745–7752 (2013)

    Article  CAS  Google Scholar 

  5. Touboul, D., Halgand, F., Brunelle, A., Kersting, R., Tallarek, E., Hagenhoff, B., Laprévote, O.: Tissue molecular ion imaging by gold cluster ion bombardment. Anal. Chem. 76, 1550–1559 (2004)

    Article  CAS  Google Scholar 

  6. Ostrowski, S.G., Van Bell, C.T., Winograd, N., Ewing, A.G.: Mass spectrometric imaging of highly curved membranes during tetrahymena mating. Science 305, 71–73 (2004)

    Article  CAS  Google Scholar 

  7. Ravanel, X., Trouiller, C., Juhel, M., Wyon, C., Kwakman, L.F.T., Léonard, D.: Static time-of-flight secondary ion mass spectrometry analysis of microelectronics related substrates using a polyatomic ion source. Appl. Surf. Sci. 255, 1440–1442 (2008)

    Article  CAS  Google Scholar 

  8. Wagner, M.S., Castner, D.G.: Characterization of adsorbed protein films by time-of-flight secondary ion mass spectrometry with principal component analysis. Langmuir 17, 4649–4660 (2001)

    Article  CAS  Google Scholar 

  9. King, A.J., Henkel, T., Rost, D., Lyon, I.C.: Trace element depth profiles in presolar silicon carbide grains. Meteorit. Planet. Sci. 47, 1624–1643 (2012)

    Article  CAS  Google Scholar 

  10. Benninghoven, A., Hagenhoff, B., Niehuis, E.: Surface MS: probing real-world samples. Anal. Chem. 65, 630A–640A (1993)

    Article  CAS  Google Scholar 

  11. Ens, W., Mao, Y., Mayer, F., Standing, K.G.: Properties of matrix-assisted laser desorption. Measurements with a time-to-digital converter. Rapid Commun. Mass Spectrom. 5, 117–123 (1991)

    Article  CAS  Google Scholar 

  12. Mowry, C.D., Johnston, M.V.: Simultaneous detection of ions and neutrals produced by matrix-assisted laser desorption. Rapid Commun. Mass Spectrom. 7, 569–575 (1993)

    Article  CAS  Google Scholar 

  13. Quist, A., Huth-Fehre, T., Sundqvist, B.: Total yield measurements in matrix-assisted laser-desorption using a quartz-crystal microbalance. Rapid Commun. Mass Spectrom. 8, 149–154 (1994)

    Article  CAS  Google Scholar 

  14. Young, C.E., Pellin, M.J., Calaway, W.F., Jorgensen, B., Schweitzer, E.L., Gruen, D.M.: Trace surface analysis via RIS/TOF mass spectrometry. Nucl. Inst. Methods Phys. Res. B27, 119–129 (1987)

    Article  CAS  Google Scholar 

  15. Ebata, S., Ishihara, M., Kumondai, K., Mibuka, R., Uchino, K., Yurimoto, H.: Development of an ultra-high performance multi-turn TOF-SIMS/SNMS system “MULTUM-SIMS/SNMS”. J. Am. Soc. Mass Spectrom. 24, 222–229 (2013)

    Article  CAS  Google Scholar 

  16. Oechsner, H.: Secondary neutral mass spectrometry (SNMS)—recent methodical progress and applications to fundamental studies in particle/surface interaction. Int. J. Mass Spectrom. Ion Processes. 143, 271–282 (1995)

    Article  CAS  Google Scholar 

  17. Nemes, P., Vertes, A.: Laser Ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal. Chem. 79, 8098–8106 (2007)

    Article  CAS  Google Scholar 

  18. Tyler, B.J., Dambach, S., Galla, S., Peterson, R.E., Arlinghaus, H.F.: Investigation of the utility of laser-secondary neutral mass spectrometry for the detection of polyaromatic hydrocarbons in individual atmospheric aerosol particles. Anal. Chem. 84, 76–82 (2012)

    Article  CAS  Google Scholar 

  19. Haase, A., Arlinghaus, H.F., Tentschert, J., Jungnickel, H., Graf, P., Mantion, A., Draude, A., Galla, S., Plendl, J., Goetz, M.E., Masic, A., Meier, W., Thünemann, A.F., Taubert, A., Luch, A.: Application of laser post-ionization secondary neutral mass spectrometry/time-of-flight secondary ion mass spectrometry in nanotoxicology: visualization of nanosilver in human macrophages and cellular responses. ACS Nano 5, 3059–3068 (2011)

    Article  CAS  Google Scholar 

  20. Willingham, D., Brenes, D.A., Wucher, A., Winograd, N.: Strong-field photoionization of sputtered neutral molecules for molecular depth profiling. J. Phys. Chem. C 114, 5391–5399 (2010)

    Article  CAS  Google Scholar 

  21. Poerschke, D., Wucher, A.: Depth profiling of anodic tantalum oxide films with gold cluster ions. Surf. Interface Anal. 43, 171–174 (2011)

    Article  CAS  Google Scholar 

  22. Zhou, J., Takahashi, L.K., Wilson, K.R., Leone, S.R., Ahmed, M.: Internal energies of ion-sputtered neutral tryptophan and thymine molecules determined by vacuum ultraviolet photoionization. Anal. Chem. 82, 3905–3913 (2010)

    Article  CAS  Google Scholar 

  23. Jones, E.A., Lockyer, N.P., Kordys, J., Vickerman, J.C.: Suppression and enhancement of secondary ion formation due to the chemical environment in static-secondary ion mass spectrometry. J. Am. Soc. Mass Spectrom. 18, 1559–1567 (2007)

    Article  CAS  Google Scholar 

  24. Jones, E.A., Lockyer, N.P., Vickerman, J.C.: Suppression and enhancement of non-native molecules within biological systems. Appl. Surf. Sci. 252, 6727–6730 (2006)

    Article  CAS  Google Scholar 

  25. Knochenmuss, R., Zenobi, R.: MALDI Ionization: in-plume processes. Chem. Rev. 103, 441–452 (2003)

    Article  CAS  Google Scholar 

  26. Mao, D., Wucher, A., Brenes, D.A., Lu, C., Winograd, N.: Cluster secondary ion mass spectrometry and the temperature dependence of molecular depth profiles. Anal. Chem. 84, 3981–3989 (2012)

    Article  CAS  Google Scholar 

  27. Wood, M., Zhou, Y., Brummel, C.L., Winograd, N.: Imaging with ion beams and laser postionization. Anal. Chem. 66, 2425–2432 (1994)

    Article  CAS  Google Scholar 

  28. Piwowar, A.M., Fletcher, J.S., Kordys, J., Lockyer, N.P., Winograd, N., Vickerman, J.C.: Effects of cryogenic sample analysis on molecular depth profiles with TOF-secondary ion mass spectrometry. Anal. Chem. 82, 8291–8299 (2010)

    Article  CAS  Google Scholar 

  29. Roddy, T.P., Cannon Jr., D.M., Ostrowski, S.G., Ewing, A.G., Winograd, N.: Proton transfer in time-of-flight secondary ion mass spectrometry studies of frozen-hydrated dipalmitoylphosphatidylcholine. Anal. Chem. 75, 4087–4094 (2003)

    Article  CAS  Google Scholar 

  30. Mahoney, C.M., Fahey, A.J., Gillen, G., Xu, G., Batteas, J.D.: Temperature-controlled depth profiling in polymeric materials using cluster secondary ion mass spectrometry (SIMS). Appl. Surf. Sci. 252, 6502–6505 (2006)

    Article  CAS  Google Scholar 

  31. Sjövall, P., Rading, D., Ray, S., Yang, L., Shard, A.G.: Sample cooling or rotation improves C60 organic depth profiles of multilayered reference samples: results from a VAMAS interlaboratory study. J. Phys. Chem. B 114, 769–774 (2010)

    Article  CAS  Google Scholar 

  32. Braun, R.M., Blenkinsopp, P., Mullock, S.J., Corlett, C., Willey, K.F., Vickerman, J.C., Winograd, N.: Performance characteristics of a chemical imaging time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom. 12, 1246–1252 (1998)

    Article  CAS  Google Scholar 

  33. Szaflarski, D.M., El-Sayed, M.A.: Kinetic energy and formation mechanisms of iodine(1+) and methyl(1+) from 266-nm picosecond versus nanosecond laser multiphoton absorption. J. Phys. Chem. 92, 2234–2239 (1988)

    Article  CAS  Google Scholar 

  34. Lockyer, N.P., Vickerman, J.C.: Multiphoton ionization mass spectrometry of small biomolecules with nanosecond and femtosecond laser pulses. Int. J. Mass Spectrom. 176, 77–86 (1998)

    Article  CAS  Google Scholar 

  35. Longobardo, A., Macpherson, A.N., Vickerman, J.C., Lockyer, N.P.: New prospects for molecular post-ionisation using femtosecond IR lasers. Surf. Interface Anal. 45, 525–528 (2013)

    Article  CAS  Google Scholar 

  36. Available at: www.drugbank.ca. Accessed June 28, 2013

  37. Piwowar, A.M., Fletcher, J.S., Lockyer, N.P., Vickerman, J.C.: Investigating the effect of temperature on depth profiles of biological material using ToF-SIMS. Surf. Interface Anal. 43, 207–210 (2011)

    Article  CAS  Google Scholar 

  38. Riederer, D.E., Chatterjee, R., Rosencrance, S.W., Postawa, Z., Dunbar, T.D., Allara, D.L., Winograd, N.: Thermal desorption induced by kilo-electronvolt ion bombardment of thiol-bound self-assembled monolayers on gold. J. Am. Chem. Soc. 119, 8089–8094 (1997)

    Article  CAS  Google Scholar 

  39. Cyganik, P., Postawa, Z., Meserole, C.A., Vandeweert, E., Winograd, N.: Ion-induced erosion of organic self-assembled monolayers. Nucl. Inst. Methods Phys. Res. B 148, 137–142 (1999)

    Article  CAS  Google Scholar 

  40. Postawa, Z., Meserole, C.A., Cyganik, P., Szymonska, J., Winograd, N.: Emission of neutral molecules from ion-bombarded thiol self-assembled monolayers. Nucl. Inst. Methods Phys. Res. B 182, 148–154 (2001)

    Article  CAS  Google Scholar 

  41. Brenes, D.A., Willingham, D., Winograd, N., Postawa, Z.: Temperature effects in the sputtering of a molecular solid by energetic atomic and cluster projectiles. Surf. Interface Anal. 43, 78–80 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support for this work by the UK Biotechnology and Biological Sciences Research Council, BBSRC, under grant BB/I023771/1. The authors are grateful to John Vickerman and Adam McMahon for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Karras.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 490 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karras, G., Lockyer, N.P. Quantitative Surface Analysis of a Binary Drug Mixture—Suppression Effects in the Detection of Sputtered Ions and Post-Ionized Neutrals. J. Am. Soc. Mass Spectrom. 25, 832–840 (2014). https://doi.org/10.1007/s13361-014-0847-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0847-6

Key words

Navigation