Skip to main content
Log in

Elemental Composition Validation from Stored Waveform Inverse Fourier Transform (SWIFT) Isolation FT-ICR MS Isotopic Fine Structure

  • Application Note
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Elemental composition assignment confidence in mass spectrometry is typically assessed by monoisotopic mass accuracy. For a given mass accuracy, resolution and detection of other isotopologues can further narrow the number of possible elemental compositions. However, such measurements require ultrahigh resolving power and high dynamic range, particularly for compounds containing low numbers of nitrogen and oxygen (both 15N and 18O occur at less than 0.4 % natural abundance). Here, we demonstrate validation of molecular formula assignment from isotopic fine structure, based on ultrahigh resolution broadband Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Dynamic range is enhanced by external quadrupole and internal stored waveform inverse Fourier transform (SWIFT) isolation to facilitate detection of low abundance heavy atom isotopologues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

References

  1. Henneberg, D.: Combination of gas chromatography and mass spectrometry for the analysis of organic mixtures. Z. Anal. Chem. 183, 12–23 (1961)

    Article  CAS  Google Scholar 

  2. Sweeley, C.C., Elliot, W.H., Fries, I., Ryhage, R.: Mass spectrometric determination of unresolved components in gas chromatic effluents. Anal. Chem. 38, 1549–1553 (1966)

    Article  CAS  Google Scholar 

  3. Ledford, E.B., Rempel, D.L., Gross, M.L.: Space charge effects in Fourier transform mass spectrometry. II. Mass calibration. Anal. Chem. 56, 2744–2748 (1984)

    Article  CAS  Google Scholar 

  4. Savory, J.J., Kaiser, N.K., McKenna, A.M., Xian, F., Blakney, G.T., Rodgers, R.P., Hendrickson, C.L., Marshall, A.G.: Parts-per-billion Fourier transform ion cyclotron resonance mass measurement accuracy with a 'walking' calibration equation. Anal. Chem. 83, 1732–1736 (2011)

    Article  CAS  Google Scholar 

  5. McLafferty, F.W., Turecek, F.: Interpretation of mass spectra, 4th edn, pp. 19–34. University Science Books, Mill Valley, CA (1993)

  6. Nikolaev, E.N., Jertz, R., Grigoryev, A., Baykut, G.: Fine structure in isotopic peak distributions measured using a dynamically harmonized Fourier transform ion cyclotron resonance cell at 7 T. Anal. Chem. 84, 2275–2283 (2012)

    Article  CAS  Google Scholar 

  7. Kind, T., Fiehn, O.: Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinforma. 7, 234 (2006)

    Article  Google Scholar 

  8. Kind, T., Fiehn, O.: Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinforma. 8, 105–125 (2007)

    Article  Google Scholar 

  9. Rockwood, A.L., Haimi, P.: Efficient calculation of accurate masses of isotopic peaks. J. Am. Soc. Mass Spectrom. 17, 415–419 (2006)

    Article  CAS  Google Scholar 

  10. Budzikiewicz, H., Grigsby, R.D.: Mass spectrometry and isotopes: a century of research and discussion. Mass Spectrom. Rev. 25, 146–157 (2006)

    Article  CAS  Google Scholar 

  11. Mitchell, D.W., DeLong, S.E.: Initial relative ion abundances and relaxation times from apodized, segmented FT/ICR time domain signals. Int. J. Mass Spectrom. Ion Processes 96, 1–16 (1990)

    Article  CAS  Google Scholar 

  12. Shi, S.D.-H., Hendrickson, C.L., Marshall, A.G.: Counting individual sulfur atoms in a protein by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry: experimental resolution of isotopic fine structure in proteins. Proc. Natl. Acad. Sci. U. S. A. 95, 11532–11537 (1998)

    Article  CAS  Google Scholar 

  13. Comisarow, M.B., Marshall, A.G.: Fourier transform ion cyclotron resonance spectroscopy. Chem. Phys. Lett. 25, 282–283 (1974)

    Article  CAS  Google Scholar 

  14. Marshall, A.G., Hendrickson, C.L., Jackson, G.S.: Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17, 1–35 (1998)

    Article  CAS  Google Scholar 

  15. Peurrung, A.J., Kouzes, R.T.: Long-term coherence of the cyclotron mode in a trapped ion cloud. Phys. Rev. E. 49, 4362–4368 (1994)

    Article  CAS  Google Scholar 

  16. Gordon, E.F., Muddiman, D.C.: Impact of ion cloud densities on the measurement of relative ion abundances in Fourier transform ion cyclotron resonance mass spectrometry: experimental observations of Coulombically induced cyclotron radius perturbations and ion cloud dephasing rates. J. Mass Spectrom. 36, 195–203 (2001)

    Article  CAS  Google Scholar 

  17. Nikolaev, E.N., Heeren, R.M.A., Popov, A.M., Chingin, K.S.: Realistic modeling of ion cloud motion in a Fourier transform ion cyclotron resonance cell by use of a particle-in-cell approach. Rapid Commun. Mass Spectrom. 21, 3527–3546 (2007)

    Article  CAS  Google Scholar 

  18. Boldin, I.A., Nikolaev, E.N.: Theory of peak coalescence in Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 23, 3213–3219 (2009)

    Article  CAS  Google Scholar 

  19. Vladimirov, G., Hendrickson, C.L., Blakney, G.T., Marshall, A.G., Heeren, R.M.A., Nikolaev, E.N.: Fourier transform ion cyclotron resonance mass resolution and dynamic range limits calculated by computer modeling of ion cloud motion. J. Am. Soc. Mass Spectrom. 23, 375–384 (2012)

    Article  CAS  Google Scholar 

  20. Håkansson, K., Chalmers, M.J., Quinn, J.P., McFarland, M.A., Hendrickson, C.L., Marshall, A.G.: Combined electron capture and infrared multiphoton dissociation for multistage MS/MS in an FT-ICR mass spectrometer. Anal. Chem. 13, 3256–3262 (2003)

    Article  Google Scholar 

  21. Marshall, A.G., Wang, T.-C.L., Chen, L., Ricca, T.L.: Tailored excitation for Fourier transform ion cyclotron mass spectrometry. J. Am. Chem. Soc. 107, 7893–7897 (1985)

    Article  CAS  Google Scholar 

  22. Guan, S., Marshall, A.G.: Stored waveform inverse Fourier transform (SWIFT) ion excitation in trapped-ion mass spectrometry: theory and applications. Int. J. Mass Spectrom. Ion Processes 157/158, 5–37 (1996)

    Article  CAS  Google Scholar 

  23. Nikolaev, E.N., Boldin, I.A., Jertz, R., Baykut, G.: Initial experimental characterization of a new ultra-high resolution FTICR cell with dynamic harmonization. J. Am. Soc. Mass Spectrom. 22, 1125–1133 (2011)

    Article  CAS  Google Scholar 

  24. Kaiser, N.K., Quinn, J.P., Blackney, G.T., Hendrickson, C.L., Marshall, A.G.: A novel 9.4 Tesla FTICR mass spectrometer with improved sensitivity, mass resolution, and mass range. J. Am. Soc. Mass Spectrom. 22, 1343–1351 (2011)

    Article  CAS  Google Scholar 

  25. Tolmachev, A.V., Robinson, E.W., Wu, S., Kang, H., Lourette, N.M., Pasa-Tolic, L., Smith, R.D.: Trapped-ion cell with improved DC potential harmonicity for FT-ICR MS. J. Am. Soc. Mass Spectrom. 9, 586–597 (2008)

    Article  Google Scholar 

  26. Kaiser, N.K., Savory, J.J., Mckenna, A.M., Quinn, J.P., Hendrickson, C.L., Marshall, A.G.: Electrically compensated Fourier transform ion cyclotron resonance cell for complex mixture mass analysis. Anal. Chem. 83, 6907–6910 (2011)

    Article  CAS  Google Scholar 

  27. Senko, M.W., Hendrickson, C.L., Emmett, M.R., Shi, S.D.-H., Marshall, A.G.: External accumulation of ions for enhanced electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 8, 970–976 (1997)

    Article  CAS  Google Scholar 

  28. Wilcox, B.E., Hendrickson, C.L., Marshall, A.G.: Improved ion extraction from a linear octopole ion trap: SIMION analysis and experimental demonstration. J. Am. Soc. Mass Spectrom. 13, 1304–1312 (2002)

    Article  CAS  Google Scholar 

  29. Senko, M.W., Canterbury, J.D., Guan, S., Marshall, A.G.: A high performance modular data system for FT-ICR mass spectrometry. Rapid Commun. Mass Spectrom. 10, 1839–1844 (1996)

    Article  CAS  Google Scholar 

  30. Blakney, G.T., Hendrickson, C.L., Marshall, A.G.: Predator data station: a fast acquisition system for advanced FT-ICR MS experiments. Int. J. Mass Spectrom. 306, 246–252 (2011)

    Article  CAS  Google Scholar 

  31. Xian, F., Hendrickson, C.L., Blakney, G.T., Beu, S.C., Marshall, A.G.: Automated broadband phase correction of Fourier transform ion cyclotron resonance mass spectra. Anal. Chem. 82, 8807–8812 (2010)

    Article  CAS  Google Scholar 

  32. Kaiser, N.K., Mckenna, A.M., Savory, J.J., Hendrickson, C.L., Marshall, A.G.: Tailored ion radius distribution for increased dynamic range in FT-ICR mass analysis of complex mixtures. Anal. Chem. 85, 265–272 (2012)

    Article  Google Scholar 

  33. Hughey, C.A., Hendrickson, C.L., Rodgers, R.P., Marshall, A.G., Qian, K.: Kendrick mass defect spectroscopy: a compact visual analysis for ultrahigh-resolution broadband mass spectra. Anal. Chem. 73, 4676–4681 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Science Foundation (NSF) Division of Materials Research through DMR-11-57490, NSF CHE-10-49753, the BP/The Gulf of Mexico Research Initiative to the Deep-C Consortium, the State of Florida, and NSF grants OCE-1044939 and OCE-1057417. The authors thank Markus Huettel and Joel Kostka for the Pensacola Beach oil spill contaminant sample, and Jeremiah Purcell for the heavy crude oil (bitumen) sample. The authors also thank Joshua Savory, Nathan Kaiser, Amy McKenna, and Jacqueline Jarvis for helpful discussions. Special thanks to John Quinn and Dan McIntosh for design and fabrication of the custom instrument components.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan G. Marshall.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 37 kb)

ESM 2

(PPT 2068 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruddy, B.M., Blakney, G.T., Rodgers, R.P. et al. Elemental Composition Validation from Stored Waveform Inverse Fourier Transform (SWIFT) Isolation FT-ICR MS Isotopic Fine Structure. J. Am. Soc. Mass Spectrom. 24, 1608–1611 (2013). https://doi.org/10.1007/s13361-013-0695-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0695-9

Key words

Navigation