Skip to main content
Log in

Analysis of the Formation Process of Gold Nanoparticles by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry

  • Application Note
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Chemical reactions of reducing agents in the gold nanoparticle (AuNP) formation process were characterized using surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). As the reaction of the AuNPs progresses, the produced AuNPs can serve as an efficient SALDI substrate. SALDI-MS revealed that the reducing agents and their oxidation products can be determined in the mass spectra. With respect to the transmission electron microscopic and UV-Vis spectroscopic examination of AuNPs, SALDI-MS results confirm not only the tendency toward AuNPs formation, but also reflect the information of the redox reaction process. Our results provide useful information for developing SALDI-MS methods to explore the chemical information regarding the surface behavior between adsorbates and nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

References

  1. Daniel, M.C., Astruc, D.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104(1), 293–346 (2004)

    Article  CAS  Google Scholar 

  2. Pissuwan, D., Niidome, T., Cortie, M.B.: The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release 149(1), 65–71 (2011)

    Article  CAS  Google Scholar 

  3. Turkevich, J., Stevenson, P.C., Hillier, J.: A study of the nucleation and growth processes in the synthesis of colloidal gold. Discus. Faraday Soc. 11, 55–75 (1951)

    Google Scholar 

  4. Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., Whyman, R.: Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system. J. Chem. Soc. Chem. Commun. 7, 801–802 (1994)

    Article  Google Scholar 

  5. Bhargava, S.K., Booth, J.M., Agrawal, S., Coloe, P., Kar, G.: Gold nanoparticle formation during bromoaurate reduction by amino acids. Langmuir 21(13), 5949–5956 (2005)

    Article  CAS  Google Scholar 

  6. Baron, R., Zayats, M., Willner, I.: Dopamine-, L-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity. Anal. Chem. 77(6), 1566–1571 (2005)

    Article  CAS  Google Scholar 

  7. Mandal, S., Selvakannan, P., Phadtare, S., Pasricha, R., Sastry, M.: Synthesis of a stable gold hydrosol by the reduction of chloroaurate ions by the amino acid, aspartic acid. P. Indian AS. Chem. Sci. 114(5), 513–520 (2002)

    Article  CAS  Google Scholar 

  8. Sanpui, P., Pandey, S.B., Ghosh, S.S., Chattopadhyay, A.: Green fluorescent protein for in situ synthesis of highly uniform Au nanoparticles and monitoring protein denaturation. J. Colloid Interf. Sci. 326(1), 129–137 (2008)

    Article  CAS  Google Scholar 

  9. Ravindra, P.: Protein-mediated synthesis of gold nanoparticles. Mater. Sci. Eng. B 163(2), 93–98 (2009)

    Article  CAS  Google Scholar 

  10. Shankar, S.S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A., Sastry, M.: Biological synthesis of triangular gold nanoprisms. Nature Mater. 3(7), 482–488 (2004)

    Article  CAS  Google Scholar 

  11. Grenha, A., Seijo, B., Serra, C., Remunan-Lopez, C.: Surface characterization of lipid/chitosan nanoparticles assemblies, using X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. J. Nanosci. Nanotechnol. 8(1), 358–365 (2008)

    CAS  Google Scholar 

  12. Nishio, K., Gokon, N., Tsubouchi, S., Ikeda, M., Narimatsu, H., Sakamoto, S., Izumi, Y., Abe, M., Handa, H.: Direct detection of redox reactions of sulfur-containing compounds on ferrite nanoparticle (FP) surface. Chem. Lett. 35(8), 974–975 (2008)

    Article  Google Scholar 

  13. Booth, J.M., Bhargava, S.K., Bond, A.M., O'Mullane, A.P.: Voltammetric monitoring of gold nanoparticle formation facilitated by glycyl-L-tyrosine: relation to electronic spectra and transmission electron microscopy images. J. Phys. Chem. B 110(25), 12419–12426 (2006)

    Article  CAS  Google Scholar 

  14. Muller, C.I., Lambert, C.: Electrochemical and optical characterization of triarylamine functionalized gold nanoparticles. Langmuir 27(8), 5029–5039 (2011)

    Article  Google Scholar 

  15. Sunner, J., Dratz, E., Chen, Y.C.: Graphite surface assisted laser desorption/ionization time-of-flight mass spectrometry of peptide and proteins from liquid solutions. Anal. Chem. 67(23), 4335–4342 (1995)

    Article  CAS  Google Scholar 

  16. Chiang, C.K., Chen, W.T., Chang, H.T.: Nanoparticle-based mass spectrometry for the analysis of biomolecules. Chem. Soc. Rev. 40(3), 1269–1281 (2011)

    Article  CAS  Google Scholar 

  17. Lin, Y.W., Chen, W.T., Chang, H.T.: Exploring the interactions between gold nanoparticles and analytes through surface-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 24(7), 933–938 (2010)

    Article  CAS  Google Scholar 

  18. Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T.: Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2(8), 151–153 (1988)

    Article  CAS  Google Scholar 

  19. Chiang, C.K., Lin, Y.W., Chen, W.T., Chang, H.T.: Accurate quantitation of glutathione in cell lysates through surface-assisted laser desorption/ionization mass spectrometry using gold nanoparticles. Nanomed. Nanotech. Biol. Med. 6(4), 530–537 (2010)

    Article  CAS  Google Scholar 

  20. Bisaglia, M., Mammi, S., Bubacco, L.: Kinetic and structural analysis of the early oxidation products of dopamine—analysis of the interactions with α-synuclein. J. Biol. Chem. 282(21), 15597–15605 (2007)

    Article  CAS  Google Scholar 

  21. Stathis, E.C., Gatos, H.C.: Determination of gold with ascorbic acid. Ind. Eng. Chem. Anal. Ed. 18(12), 801–801 (1946)

    Article  CAS  Google Scholar 

  22. Sau, T.K., Murphy, C.J.: Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution J. Am. Chem. Soc. 126(28), 8648–8649 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the Czech Science Foundation P206/10/J012 and the Ministry of Education, Youth, and Sports of the Czech Republic CZ.1.05/1.1.00/02.0068, and the National Science Council of Taiwan under contracts NSC 101-2113-M-002-002-MY3 and NSC 99-2923-M-002-004-MY3. I.T. is supported by Brno City Municipality Scholarships for Talented Ph.D. Students.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huan-Tsung Chang or Jan Preisler.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1170 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomalová, I., Lee, CH., Chen, WT. et al. Analysis of the Formation Process of Gold Nanoparticles by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 24, 305–308 (2013). https://doi.org/10.1007/s13361-012-0541-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-012-0541-5

Key words

Navigation