Skip to main content
Log in

Identification and sex expression profiling of odorant-binding protein genes in Trichogramma japonicum (Hymenoptera: Trichogrammatidae) using RNA-Seq

  • Original Research Paper
  • Published:
Applied Entomology and Zoology Aims and scope Submit manuscript

Abstract

Trichogramma japonicum Ashmead (Hymenoptera: Trichogrammatidae) is a biological control agent that parasitizes the eggs of many lepidopteran insects. The control efficiency is closely related to the ability of the parasitoid to use chemical volatiles in searching for hosts, and the odorant binding proteins (OBPs) may serve as a first step in the perception of these chemical cues. Understanding the ability of Trichogramma to detect relevant host odorant cues might help to design better strategies to control target lepidopteran insect pests. In the present study, we assembled the transcriptome of T. japonicum using Illumina sequencing technology and identified 15 putative OBP genes. All the OBP genes have complete open reading frames and contain six conserved cysteines. In addition, sex-biased expression was found in eight OBP genes by using quantitative real-time PCR, which suggested different functions of these genes. Phylogenetic analyses revealed that Hymenoptera OBP genes were divided into Classic, Minus-C, and Double Minus-C subfamilies. All the identified OBP genes of T. japonicum belong to the Classic subfamily. These results provide an important foundation for a better understanding of the complex chemoreception system of T. japonicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed T, Zhang T, Wang Z, He K, Bai S (2016) Gene set of chemosensory receptors in the polyembryonic endoparasitoid Macrocentrus cingulum. Sci Rep 6:24078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernal JS, Luck RF (2007) Mate finding via a trail sex pheromone by Aphytis melinus DeBach (Hymenoptera: Aphelinidae) males. J Insect Behav 20:515–525

    Article  Google Scholar 

  • Bonduriansky R (2001) The evolution of male mate choice in insects: a synthesis of ideas and evidence. Biol Rev 76:305–339

    Article  CAS  PubMed  Google Scholar 

  • Bretman A, Gage MJ, Chapman T (2011) Quick-change artists: male plastic behavioural responses to rivals. Trends Ecol Evol 26:467–473

    Article  PubMed  Google Scholar 

  • Cao D, Liu Y, Wei J, Liao X, Walker WB, Li J, Wang G (2014) Identification of candidate olfactory genes in Chilo suppressalis by antennal transcriptome analysis. Int J Biol Sci 10:846–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colazza S, Peri E, Salerno G, Conti E (2009) Host searching by egg parasitoids: exploitation of host chemical cues. In: Cônsoli FL, Parra JRP, Zucchi RA (eds) Egg parasitoids in agroecosystems with emphasis on Trichogramma. Springer, Netherlands, pp 97–148

    Chapter  Google Scholar 

  • Donnell DM (2014) Analysis of odorant-binding protein gene family members in the polyembryonic wasp, Copidosoma floridanum: evidence for caste bias and host interaction. J Insect Physiol 60:127–135

    Article  CAS  PubMed  Google Scholar 

  • Elfekih S, Chen CY, Hsu JC, Belcaid M, Haymer D (2016) Identification and preliminary characterization of chemosensory perception-associated proteins in the melon fly Bactrocera cucurbitae using RNA-seq. Sci Rep 6:19112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farias LR, Schimmelpfeng PH, Togawa RC, Costa MM, Grynberg P, Martins NF, Paula DP (2015) Transcriptome-based identification of highly similar odorant-binding proteins among Neotropical stink bugs and their egg parasitoid. PLoS One 10:e0132286

    Article  PubMed  PubMed Central  Google Scholar 

  • Field LM, Pickett JA, Wadhams LJ (2000) Molecular studies in insect olfaction. Insect Mol Biol 9:545–551

    Article  CAS  PubMed  Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton, New Jersey, pp 26–81

    Google Scholar 

  • Gong DP, Zhang HJ, Zhao P, Xia QY, Xiang ZH (2009) The odorant binding protein gene family from the genome of silkworm, Bombyx mori. BMC Genom 10:332

    Article  Google Scholar 

  • Grosse-Wilde E, Kuebler LS, Bucks S, Vogel H, Wicher D, Hansson BS (2011) Antennal transcriptome of Manduca sexta. Proc Natl Acad Sci USA 108:7449–7454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu P, Wang J, Cui M, Tao J, Luo Y (2016) Antennal transcriptome analysis of the Asian longhorned beetle Anoplophora glabripennis. Sci Rep 6:26652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Kuma KI, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkness EF, Haas BJ, Sun W, Braig HR, Perotti MA, Clark JM, Gerlach D (2010) Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc Natl Acad Sci USA 107:12168–12173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagarde A, Spinelli S, Tegoni M, He X, Field L, Zhou JJ, Cambillau C (2011) The crystal structure of odorant binding protein 7 from Anopheles gambiae exhibits an outstanding adaptability of its binding site. J Mol Biol 414:401–412

    Article  CAS  PubMed  Google Scholar 

  • Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391

    Article  CAS  PubMed  Google Scholar 

  • Leite NR, Krogh R, Xu W, Ishida Y, Iulek J, Leal WS, Oliva G (2009) Structure of an odorant-binding protein from the mosquito Aedes aegypti suggests a binding pocket covered by a pH-sensitive “lid”. PLoS One 4:e8006

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S, Picimbon JF, Ji S, Kan Y, Qiao CL, Zhou JJ, Pelosi P (2008) Multiple functions of an odorant-binding protein in the mosquito Aedes aegypti. Biochem Bioph Res Commu 372:464–468

    Article  CAS  Google Scholar 

  • Li K, Yang X, Xu G, Cao Y, Lu B, Peng Z (2015) Identification of putative odorant binding protein genes in Asecodes hispinarum, a parasitoid of coconut leaf beetle (Brontispa longissima) by antennal RNA-Seq analysis. Biochem Bioph Res Commu 467:514–520

    Article  CAS  Google Scholar 

  • Liu Y, Gu S, Zhang Y, Guo Y, Wang G (2012) Candidate olfaction genes identified within the Helicoverpa armigera antennal transcriptome. PLoS One 7:e48260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu NY, Zhang T, Ye ZF, Li F, Dong SL (2015) Identification and characterization of candidate chemosensory gene families from Spodoptera exigua developmental transcriptomes. Int J Biol Sci 11:1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Maguire CP, Lizé A, Price TA (2015) Assessment of rival males through the use of multiple sensory cues in the fruitfly Drosophila pseudoobscura. PLoS One 10:e0123058

    Article  PubMed  PubMed Central  Google Scholar 

  • Michereff MFF, Laumann RA, Borges M, Michereff-Filho M, Diniz IR, Neto ALF, Moraes MCB (2011) Volatiles mediating a plant-herbivore-natural enemy interaction in resistant and susceptible soybean cultivars. J Chem Ecol 37:273–285

    Article  CAS  PubMed  Google Scholar 

  • Nishimura O, Brillada C, Yazawa S, Maffei ME, Arimura G (2012) Transcriptome pyrosequencing of the parasitoid wasp Cotesia vestalis: genes involved in the antennal odorant-sensory system. PLoS One 7:e50664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelletier J, Leal WS (2009) Genome analysis and expression patterns of odorant-binding proteins from the southern house mosquito Culex pipiens quinquefasciatus. PLoS One 4:e6237

    Article  PubMed  PubMed Central  Google Scholar 

  • Pelletier J, Leal WS (2011) Characterization of olfactory genes in the antennae of the southern house mosquito, Culex quinquefasciatus. J Insect Physiol 57:915–929

    Article  CAS  PubMed  Google Scholar 

  • Pelosi P, Maida R (1995) Odorant-binding proteins in insects. Comp Biochem Phys B 111:503–514

    Article  CAS  Google Scholar 

  • Pelosi P, Zhou JJ, Ban LP, Calvello M (2006) Soluble proteins in insect chemical communication. Cell Mol Life Sci 63:1658–1676

    Article  CAS  PubMed  Google Scholar 

  • Pitts RJ, Rinker DC, Jones PL, Rokas A, Zwiebel LJ (2011) Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding. BMC Genom 12:271

    Article  CAS  Google Scholar 

  • Rand TA, Waters DK, Shanower TG (2015) Preliminary evaluation of the parasitoid wasp, Collyria catoptron, as a potential biological control agent against the wheat stem sawfly, Cephus cinctus, in North America. Biocontrol Sci Technol 26:61–71

    Article  Google Scholar 

  • Robertson HM, Gadau J, Wanner KW (2010) The insect chemoreceptor superfamily of the parasitoid jewel wasp Nasonia vitripennis. Insect Mol Biol 19:121–136

    Article  CAS  PubMed  Google Scholar 

  • Rützler M, Zwiebel LJ (2005) Molecular biology of insect olfaction: recent progress and conceptual models. J Comp Physiol A 191:777–790

    Article  Google Scholar 

  • Sanchez-Gracia A, Vieira FG, Rozas J (2009) Molecular evolution of the major chemosensory gene families in insects. Heredity 103:208–216

    Article  CAS  PubMed  Google Scholar 

  • Silvestro D, Michalak I (2011) RAxML GUI: a graphical front–end for RAML. Org Divers Evol 12:335–337

    Article  Google Scholar 

  • Sun H, Song Y, Du J, Wang X, Cheng Z (2016) Identification and tissue distribution of chemosensory protein and odorant binding protein genes in Athetis dissimilis. Appl Entomol Zool 51:409–420

    Article  CAS  Google Scholar 

  • Tsitsanou KE, Drakou CE, Thireou T, Gruber AV, Kythreoti G, Azem A, Zographos SE (2013) Crystal and solution studies of the “Plus-C” odorant-binding protein 48 from Anopheles gambiae control of binding specificity through three-dimensional domain swapping. J Biol Chem 288:33427–33438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira FG, Rozas J (2011) Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol Evol 3:476–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira FG, Foreˆt S, He X, Rozas J, Field LM, Zhou JJ (2012) Unique features of odorant-binding proteins of the parasitoid wasp Nasonia vitripennis revealed by genome annotation and comparative analyses. PLoS One 7:e43034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SN, Peng Y, Lu ZY, Dhiloo KH, Gu SH, Li RJ, Guo YY (2015) Identification and expression analysis of putative chemosensory receptor genes in Microplitis mediator by antennal transcriptome screening. Int J Biol Sci 11:737–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Lü L, He Y, Shi Q, Tu C, Gu J (2016) Mate choice and host discrimination behavior of the parasitoid Trichogramma chilonis. Bull Entomol Res 106:530–537

    Article  CAS  PubMed  Google Scholar 

  • Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK (2010) Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327:343–348

    Article  CAS  PubMed  Google Scholar 

  • Yang ZQ, Wang XY, Zhang YN (2014) Recent advances in biological control of important native and invasive forest pests in China. Biol Control 68:117–128

    Article  Google Scholar 

  • Zhang SF, Kong XB, Wang HB, Wang HB, Zhou G, Yu JX, Liu F, Zhang Z (2016) Sensory and immune genes identification and analysis in a widely used parasitoid wasp Trichogramma dendrolimi (Hymenoptera: Trichogrammatidae). Insect Sci 23:417–429

    Article  PubMed  Google Scholar 

  • Zhao Y, Wang F, Zhang X, Zhang S, Guo S, Zhu G, Li M (2016) Transcriptome and expression patterns of chemosensory genes in antennae of the parasitoid wasp Chouioia cunea. PLoS One 11:e0148159

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou JJ, Vieira FG, He XL, Smadja C, Liu R, Rozas J, Field LM (2010) Genome annotation and comparative analyses of the odorant-binding proteins and chemosensory proteins in the pea aphid Acyrthosiphon pisum. Insect Mol Biol 19:113–122

    Article  CAS  PubMed  Google Scholar 

  • Zhou CX, Min SF, Yan-Long T, Wang MQ (2015) Analysis of antennal transcriptome and odorant binding protein expression profiles of the recently identified parasitoid wasp, Sclerodermus sp. Comp Biochem Phys D 16:10–19

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Basic Research Program of China (Grant No. 2013CB127605) from the Chinese Ministry of Science and Technology and the Special Fund for Agro-scientific Research in the Public Interest of China (201203036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Xi Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 232 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, JD., Shen, ZC., Hua, HQ. et al. Identification and sex expression profiling of odorant-binding protein genes in Trichogramma japonicum (Hymenoptera: Trichogrammatidae) using RNA-Seq. Appl Entomol Zool 52, 623–633 (2017). https://doi.org/10.1007/s13355-017-0516-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13355-017-0516-x

Keywords

Navigation