Skip to main content
Log in

Semi-idealized modeling of lightning initiation related to vertical air motion and cloud microphysics

  • Regular Article
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

A three-dimensional charge–discharge numerical model is used, in a semi-idealized mode, to simulate a thunder-storm cell. Characteristics of the graupel microphysics and vertical air motion associated with the lightning initiation are revealed, which could be useful in retrieving charge strength during lightning when no charge–discharge model is available. The results show that the vertical air motion at the lightning initiation sites (Wini) has a cubic polynomial correlation with the maximum updraft of the storm cell (Wcell-max), with the adjusted regression coefficient R2 of approximately 0.97. Meanwhile, the graupel mixing ratio at the lightning initiation sites (qg-ini) has a linear correlation with the maximum graupel mixing ratio of the storm cell (qg-cell-max) and the initiation height (zini), with the coefficients being 0.86 and 0.85, respectively. These linear correlations are more significant during the middle and late stages of lightning activity. A zero-charge zone, namely, the area with very low net charge density between the main positive and negative charge layers, appears above the area of qg-cell-max and below the upper edge of the graupel region, and is found to be an important area for lightning initiation. Inside the zero-charge zone, large electric intensity forms, and the ratio of qice (ice crystal mixing ratio) to qg (graupel mixing ratio) illustrates an exponential relationship to qg-ini. These relationships provide valuable clues to more accurately locating the high-risk area of lightning initiation in thunderstorms when only dual-polarization radar data or outputs from numerical models without charging/discharging schemes are available. The results can also help understand the environmental conditions at lightning initiation sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, M. B., A. M. Blyth, H. J. Christian, et al., 1999: Relationships between lightning activity and various thundercloud parameters: Satellite and modelling studies. Atmos. Res., 51, 221–236, doi: 10.1016/S0169-8095(99)00009-5.

    Article  Google Scholar 

  • Barthe, C., and M. C. Barth, 2008: Evaluation of a new lightningproduced NOx parameterization for cloud resolving models and its associated uncertainties. Atmos. Chem. Phys., 8, 4691–4710, doi: 10.5194/acp-8-4691-2008.

    Article  Google Scholar 

  • Barthe, C., W. Deierling, and M. C. Barth, 2010: Estimation of total lightning from various storm parameters: A cloudresolving model study. J. Geophys. Res., 115, D24202, doi: 10.1029/2010JD014405.

    Article  Google Scholar 

  • Black, R. A., and J. Hallett, 1999: Electrification of the hurricane. J. Atmos. Sci., 56, 2004–2028, doi: 10.1175/1520-0469(1999)056<2004:EOTH>2.0.CO;2.

    Article  Google Scholar 

  • Bruning, E. C., and D. R. MacGorman, 2013: Theory and observations of controls on lightning flash size spectra. J. Atmos. Sci., 70, 4012–4029, doi: 10.1175/JAS-D-12-0289.1.

    Article  Google Scholar 

  • Bruning, E. C., W. D. Rust, T. J. Schuur, et al., 2007: Electrical and polarimetric radar observations of a multicell storm in TELEX. Mon. Wea. Rev., 135, 2525–2544, doi: 10.1175/MWR3421.1.

    Article  Google Scholar 

  • Calhoun, K. M., D. R. MacGorman, C. L. Ziegler, et al., 2013: Evolution of lightning activity and storm charge relative to dual-Doppler analysis of a high-precipitation supercell storm. Mon. Wea. Rev., 141, 2199–2223, doi: 10.1175/MWR-D-12-00258.1.

    Article  Google Scholar 

  • Carey, L. D., and S. A. Rutledge, 1996: A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm. Meteor. Atmos. Phys., 59, 33–64, doi: 10.1007/BF01032000.

    Article  Google Scholar 

  • Carey, L. D., A. L. Bain, and R. Matthee, 2014: Kinematic and microphysical control of lightning in multicell convection over Alabama during DC3. 5th International Lightning Meteorology Conference, 20–21 March, Tucson, Arizona, USA.

    Google Scholar 

  • Deierling, W., and W. A. Petersen, 2008: Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res., 113, D16210, doi: 10.1029/2007JD009598.

    Article  Google Scholar 

  • Dye, J. E., J. J. Jones, A. J. Weinheimer, et al., 1988: Observations within two regions of charge during initial thunderstorm electrification. Quart. J. Roy. Meteor. Soc., 114, 1271–1290, doi: 10.1002/(ISSN)1477-870X.

    Article  Google Scholar 

  • Gardiner, B., D. Lamb, R. L. Pitter, et al., 1985: Measurements of initial potential gradient and particle charges in a Montana summer thunderstorm. J. Geophys. Res., 90, 6079–6086, doi: 10.1029/JD090iD04p06079.

    Article  Google Scholar 

  • Gremillion, M. S., and R. E. Orville, 1999: Thunderstorm characteristics of cloud-to-ground lightning at the Kennedy Space Center, Florida: A study of lightning initiation signatures as indicated by the WSR-88D. Wea. Forecasting, 14, 640–649, doi: 10.1175/1520-0434(1999)014<0640:TCOCTG>2.0.CO;2.

    Article  Google Scholar 

  • Hallett, J., and C. P. R. Saunders, 1979: Charge separation associated with secondary ice crystal production. J. Atmos. Sci., 36, 2230–2235, doi: 10.1175/1520-0469(1979)036<2230:CSAWSI>2.0.CO;2.

    Article  Google Scholar 

  • Hondle, K. D., and M. D. Eilts, 1994: Doppler radar signatures of developing thunderstorms and their potential to indicate the onset of cloud-to-ground lightning. Mon. Wea. Rev., 122, 1818–1836, doi: 10.1175/1520-0493(1994)122<1818:DRSODT>2.0.CO;2.

    Article  Google Scholar 

  • Hu, Z. J., and G. F. He, 1987: Numerical simulation of microprocesses in cumulonimbus clouds. I: Microphysical model. Acta Meteor. Sinica, 45, 467–484. (in Chinese)

    Google Scholar 

  • Jacobson, E. A., and E. P. Krider, 1976: Electrostatic field changes produced by Florida lightning. J. Atmos. Sci., 33, 103–117, doi: 10.1175/1520-0469(1976)033<0103:EFCPBF>2.0.CO;2.

    Article  Google Scholar 

  • Kasemir, H. W., 1960: A contribution to the electrostatic theory of a lightning discharge. J. Geophys. Res., 65, 1873–1878, doi: 10.1029/JZ065i007p01873.

    Article  Google Scholar 

  • Kasemir, H. W., 1984: Theoretical and experimental determination of field, charge and current on an aircraft hit by natural and triggered lightning. International Aerospace and Ground Conference on Lightning and Static Electricity, Orlando, National Interafency Coordinating Group.

    Google Scholar 

  • Lund, N. R., D. R. MacGorman, T. J. Schuur, et al., 2009: Relationships between lightning location and polarimetric radar signatures in a small mesoscale convective system. Mon. Wea. Rev., 137, 4151–4170, doi: 10.1175/2009MWR2860.1.

    Article  Google Scholar 

  • Makowski, J. A., D. R. MacGorman, M. I. Biggerstaff, et al., 2013: Total lightning characteristics relative to radar and satellite observations of Oklahoma mesoscale convective systems. Mon. Wea. Rev., 141, 1593–1611, doi: 10.1175/MWRD-11-00268.1.

    Article  Google Scholar 

  • Mansell, E. R., D. R. MacGorman, C. L. Ziegler, et al., 2002: Simulated three-dimensional branched lightning in a numerical thunderstorm model. J. Geophy. Res., 107, ACL 2-1–ACL 2-12, doi: 10.1029/2000JD000244.

    Article  Google Scholar 

  • Marshall, T. C., M. P. McCarthy, and W. D. Rust, 1995: Electric field magnitudes and lightning initiation in thunderstorms. J. Geophys. Res., 100, 7097–7103, doi: 10.1029/95JD00020.

    Article  Google Scholar 

  • Martinez, M., 2002: The relationship between radar reflectivity and lightning activity at initial stages of convective storms. 82nd Annual Meeting, First Annual Student Conference, Orlando, Florida, 14 January, American Meteorological Society.

    Google Scholar 

  • Mecikalski, R. M., A. L. Bain, and L. D. Carey, 2015: Radar and lightning observations of deep moist convection across Northern Alabama during DC3: 21 May 2012. Mon. Wea. Rev., 143, 2774–2794, doi: 10.1175/MWR-D-14-00250.1.

    Article  Google Scholar 

  • Payne, C. D., T. J. Schuur, D. R. MacGorman, et al., 2010: Polarimetric and electrical characteristics of a lightning ring in a supercell storm. Mon. Wea. Rev., 138, 2405–2425, doi: 10.1175/2009MWR3210.1.

    Article  Google Scholar 

  • Pereyra, R. G., E. E. Avila, N. E. Castellano, et al., 2000: A laboratory study of graupel charging. J. Geophys. Res., 105, 20803–20812, doi: 10.1029/2000JD900244.

    Article  Google Scholar 

  • Petersen, W. A., S. A. Rutledge, and R. E. Orville, 1996: Cloud-toground lightning observations from TOGA COARE: Selected results and lightning location algorithms. Mon. Wea. Rev., 124, 602–620, doi: 10.1175/1520-0493(1996)124<0602:CTGLOF>2.0.CO;2.

    Article  Google Scholar 

  • Petersen, W. A., S. A. Rutledge, R. C. Cifelli, et al., 1999: Shipborne Dual-Doppler operations during TOGA COARE: Integrated observations of storm kinematics and electrification. Bull. Amer. Meteor. Soc., 80, 81–97, doi: 10.1175/1520-0477(1999)080<0081:SDDODT>2.0.CO;2.

    Article  Google Scholar 

  • Pickering, K. E., Y. S. Wang, W. K. Tao, et al., 1998: Vertical distributions of lightning NOx for use in regional and global chemical transport models. J. Geophys. Res., 103, 31203–31216, doi: 10.1029/98JD02651.

    Article  Google Scholar 

  • Preston, A. D., and H. E. Fuelberg, 2015: Improving lightning cessation guidance using polarimetric radar data. Wea. Forecasting, 30, 308–328, doi: 10.1175/WAF-D-14-00031.1.

    Article  Google Scholar 

  • Price, C., and D. Rind, 1992: A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res., 97, 9919–9933, doi: 10.1029/92JD00719.

    Article  Google Scholar 

  • Proctor, D. E., 1991: Regions where lightning flashes began. J. Geophys. Res., 96, 5099–5112, doi: 10.1029/90JD02120.

    Article  Google Scholar 

  • Rutledge, S. A., E. R. Williams, and T. D. Keenan, 1992: The down upper Doppler and electricity experiment (DUNDEE): Overview and preliminary results. Bull. Amer. Meteor. Soc., 73, 3–16, doi: 10.1175/1520-0477(1992)073<0003:TDUDAE>2.0.CO;2.

    Article  Google Scholar 

  • Shackford, C. R., 1960: Radar indications of a precipitation-lightning relationship in New England thunderstorms. J. Meteor., 17, 15–19, doi: 10.1175/1520-0469(1960)017<0015:RIOAPL>2.0.CO;2.

    Article  Google Scholar 

  • Shi, Z., Y. B. Tan, H. Q. Tang, et al., 2015: Aerosol effect on the land–ocean contrast in thunderstorm electrification and lightning frequency. Atmos. Res., 164-165, 131–141, doi: 10.1016/j.atmosres.2015.05.006.

    Article  Google Scholar 

  • Shi, Z., H. Q. Tang, and Y. B. Tan, 2016: Effects of the inductive charging on the electrification and lightning discharges in thunderstorms. Terr. Atmos. Ocean. Sci., 27, 241–251, doi: 10.3319/TAO.2015.12.10.01(A).

    Article  Google Scholar 

  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 1536–1548, doi: 10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2.

    Article  Google Scholar 

  • Tan, Y. B., S. C. Tao, and B. Y. Zhu, 2006a: Fine-resolution simulation of the channel structures and propagation features of intracloud lightning. Geophys. Res. Lett., 33, L09809, doi: 10.1029/2005GL025523.

    Article  Google Scholar 

  • Tan, Y. B., S. C. Tao, B. Y. Zhu, et al., 2006b: Numerical simulations of the bi-level and branched structure of intracloud lightning flashes. Sci. China Ser. D, 49, 661–672, doi: 10.1007/s11430-006-0661-5.

    Article  Google Scholar 

  • Tan, Y. B., S. C. Tao, B. Y. Zhu, et al., 2007: A simulation of the effects of intra-cloud lightning discharges on the charges and electrostatic potential distributions in a thundercloud. Chinese J. Geophys., 50, 1053–5065. (in Chinese)

    Google Scholar 

  • Tan, Y. B., S. C. Tao, Z. W. Liang, et al., 2014: Numerical study on relationship between lightning types and distribution of space charge and electric potential. J. Geophys. Res., 119, 1003–1014, doi: 10.1002/2013JD019983.

    Google Scholar 

  • Tan, Y. B., Z. Shi, Z. L. Chen, et al., 2017: A numerical study of aerosol effects on electrification of thunderstorms. J. Atmos. Solar–Terr. Phys., 154, 236–247, doi: 10.1016/j.jastp.2015.11.006.

    Article  Google Scholar 

  • Tessendorf, S. A., L. J. Miller, K. C. Wiens, et al., 2005: The 29 June 2000 supercell observed during STEPS. Part I: Kinematics and microphysics. J. Atmos. Sci., 62, 4127–4150, doi: 10.1175/JAS3585.1.

    Article  Google Scholar 

  • Vincent, B. R., L. D. Carey, D. Schneider, et al., 2003: Using WSR-88D reflectivity for the prediction of cloud-to-ground lightning: A central North Carolina study. NOAA/National Weather Service Forecast Office, Newport/Morehead City, NC, 35–44.

    Google Scholar 

  • Wang, C. X., 2014: The relationship between vertical airflow characteristics and lightning activity of thunderstorm. Master dissertation, Chinese Academy of Meteorological Sciences, Beijing, China, 66 pp. (in Chinese)

    Google Scholar 

  • Wang, F., Y. J. Zhang, J. Z. Zhao, et al., 2008: The preliminary application of radar data to the lightning warning of isolated storm cells. J. Appl. Meteor. Sci., 19, 153–160. (in Chinese)

    Google Scholar 

  • Wang, F., W. S. Dong, Y. J. Zhang, et al., 2009: Case study of big particles effect on lightning initiation in clouds using model. J. Appl. Meteor. Sci., 20, 564–570. (in Chinese)

    Google Scholar 

  • Wang, F., Y. J. Zhang, D. Zheng, et al., 2015a: Impact of the vertical velocity field on charging processes and charge separation in a simulated thunderstorm. J. Meteor. Res., 29, 328–343, doi: 10.1007/s13351-015-4023-0.

    Article  Google Scholar 

  • Wang, F., Y. J. Zhang, and D. Zheng, 2015b: Impact of updraft on neutralized charge rate by lightning in thunderstorms: A simulation case study. J. Meteor. Res., 29, 997–1010, doi: 10.1007/s13351-015-5023-9.

    Article  Google Scholar 

  • Wang, J., S. D. Zhou, B. Yang, et al., 2016: Nowcasting cloud-toground lightning over Nanjing area using S-band dual-polarization Doppler radar. Atmos. Res., 178-179, 55–64, doi: 10.1016/j.atmosres.2016.03.007.

    Article  Google Scholar 

  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 4151–4177, doi: 10.1175/JAS3615.1.

    Article  Google Scholar 

  • Williams, E. R., 1985: Large-scale charge separation in thunderclouds. J. Geophys. Res., 90, 6013–6025, doi: 10.1029/JD090iD04p06013.

    Article  Google Scholar 

  • Williams, E. R., and R. M. Lhermitte, 1983: Radar tests of the precipitation hypothesis for thunderstorm electrification. J. Geophys. Res., 88, 10984–10992, doi: 10.1029/JC088iC15p10984.

    Article  Google Scholar 

  • Workman, E. J., and S. E. Reynolds, 1949: Electrical activity as related to thunderstorm cell growth. Bull. Amer. Meteor. Soc., 30, 142–144.

    Google Scholar 

  • Zheng, D., and D. R. MacGorman, 2016: Characteristics of flash initiations in a supercell cluster with tornadoes. Atmos. Res., 167, 249–264, doi: 10.1016/j.atmosres.2015.08.015.

    Article  Google Scholar 

  • Zhou, Z. M., and X. L. Guo, 2009: 3D modeling on relationships among intracloud lightning, updraft and liquid water content in a severe thunderstorm case. Climatic Environ. Res., 14, 31–44. (in Chinese)

    Google Scholar 

  • Ziegler, C. L., D. R. MacGorman, J. E. Dye, et al., 1991: A model evaluation of noninductive graupel–ice charging in the early electrification of a mountain thunderstorm. J. Geophys. Res., 96, 12833–12855, doi: 10.1029/91JD01246.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wang.

Additional information

Supported by the National Natural Science Foundation of China (41675001 and 41405004), National (Key) Basic Research and Development (973) Program of China (2014CB441406), and Basic Research Funds of Chinese Academy of Meteorological Sciences (2016Z002 and 2017Z003).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Zhang, Y., Zheng, D. et al. Semi-idealized modeling of lightning initiation related to vertical air motion and cloud microphysics. J Meteorol Res 31, 976–986 (2017). https://doi.org/10.1007/s13351-017-6201-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-017-6201-8

Key words

Navigation