Skip to main content
Log in

Comparison of spatial interpolation methods for gridded bias removal in surface temperature forecasts

  • Article
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

All numerical weather prediction (NWP) models inherently have substantial biases, especially in the forecast of near-surface weather variables. Statistical methods can be used to remove the systematic error based on historical bias data at observation stations. However, many end users of weather forecasts need bias corrected forecasts at locations that scarcely have any historical bias data. To circumvent this limitation, the bias of surface temperature forecasts on a regular grid covering Iran is removed, by using the information available at observation stations in the vicinity of any given grid point. To this end, the running mean error method is first used to correct the forecasts at observation stations, then four interpolation methods including inverse distance squared weighting with constant lapse rate (IDSW-CLR), Kriging with constant lapse rate (Kriging-CLR), gradient inverse distance squared with linear lapse rate (GIDS-LR), and gradient inverse distance squared with lapse rate determined by classification and regression tree (GIDS-CART), are employed to interpolate the bias corrected forecasts at neighboring observation stations to any given location. The results show that all four interpolation methods used do reduce the model error significantly, but Kriging-CLR has better performance than the other methods. For Kriging-CLR, root mean square error (RMSE) and mean absolute error (MAE) were decreased by 26% and 29%, respectively, as compared to the raw forecasts. It is found also, that after applying any of the proposed methods, unlike the raw forecasts, the bias corrected forecasts do not show spatial or temporal dependency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acharya, N., S. Chattopadhyay, U. C. Mohanty, et al., 2013: On the bias correction of general circulation model output for Indian summer monsoon. Meteor. Appl., 20, 349–356, doi: 10.1002/met.2013.20.issue-3.

    Article  Google Scholar 

  • Breiman, L., 2001: Random forests. Machine Learning, 45, 5–32, doi: 10.1023/A:1010933404324.

    Article  Google Scholar 

  • Breiman, L., J. Friedman, C. J. Stone, et al., 1984: Classification and Regression Trees. Taylor and Francis, Oxford, 368 pp.

    Google Scholar 

  • Courault, D., and P. Monestiez, 1999: Spatial interpolation of air temperature according to atmospheric circulation patterns in Southeast France. Int. J. Climato,l. 19, 365–378, doi: 10.1002/(SICI)1097-0088(19990330)19:4<365::AIDJOC369> 3.0.CO;2-E.

    Article  Google Scholar 

  • Cressie, N. A. C., 2015: Statistics for Spatial Data. Wiley, New York, 928 pp.

    Google Scholar 

  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Re,v. 87, 367–374, doi: 10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    Article  Google Scholar 

  • Dodson, R., and D. Marks, 1997: Daily air temperature interpolated at high spatial resolution over a large mountainous region. Climate Res., 8, 1–20, doi: 10.3354/cr008001.

    Article  Google Scholar 

  • Galanis, G., and M. Anadranistakis, 2002: A one-dimensional Kalman filter for the correction of near surface temperature forecasts. Meteor. Appl., 9, 437–441, doi: 10.1017/S1350482702004061.

    Article  Google Scholar 

  • Gel, Y. R., 2007: Comparative analysis of the local observationbased (LOB) method and the nonparametric regression-based method for gridded bias correction in mesoscale weather forecasting. Wea. Forecasting, 22, 1243–1256, doi: 10.1175/2007WAF2006046.1.

    Article  Google Scholar 

  • Glahn, B., K. Gilbert, R. Cosgrove, et al., 2009: The gridding of MOS. Wea. Forecasting, 24, 520–529, doi: 10.1175/2008WAF2007080.1.

    Article  Google Scholar 

  • Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 1203–1211, doi: 10.1175/1520-0450(1972) 011<1203:TUOMOS>2.0.CO;2.

    Article  Google Scholar 

  • Hacker, J. P., and D. L. Rife, 2007: A practical approach to sequential estimation of systematic error on near-surface mesoscale grids. Wea. Forecastin,g 22, 1257–1273, doi: 10.1175/2007WAF2006102.1.

    Article  Google Scholar 

  • Homleid, M., 1995: Diurnal corrections of short-term surface temperature forecasts using the Kalman filter. Wea. Forecasting, 10, 689–707, doi: 10.1175/1520-0434(1995)010<0689: DCOSTS>2.0.CO;2.

    Article  Google Scholar 

  • Klein, W. H., B. M. Lewis, and I. Enger, 1959: Objective prediction of five-day mean temperatures during winter. J. Atmos. Sci., 16, 672–682.

    Google Scholar 

  • Lam, H., K. K.-Y. Shum, and J. S.-Y. Tang, 2011: Regional temperature forecast for the next day in Hong Kong. Acta Meteor. Sinica, 25, 725–733, doi: 10.1007/s13351-011-0603-9.

    Article  Google Scholar 

  • Li, C., D. H. Chen, X. L. Li, et al., 2015: Effects of terrain-following vertical coordinates on high-resolution NWP simulations. J. Meteor. Res., 29, 432–445, doi: 10.1007/s13351-015-4212-x.

    Article  Google Scholar 

  • Li, J., P. Wang, H. Han, et al., 2016: On the assimilation of satellite sounder data in cloudy skies in numerical weather prediction models. J. Meteor. Res., 30, 169–182, doi: 10.1007/s13351-016-5114-2.

    Article  Google Scholar 

  • Liston, G. E., and K. Elder, 2006: A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). J. Hydrometeor., 7, 217–234, doi: 10.1175/JHM486.1.

    Article  Google Scholar 

  • Marzban, C., 2003: Neural networks for postprocessing model output: ARPS. Mon. Wea. Rev,. 131, 1103–111,1 doi: 10.1175/1520-0493(2003)131<1103:NNFPMO>2.0.CO;2.

    Article  Google Scholar 

  • Mass, C. F., J. Baars, G. Wedam, et al., 2008: Removal of systematic model bias on a model grid. Wea. Forecasting, 23, 438–459, doi: 10.1175/2007WAF2006117.1.

    Article  Google Scholar 

  • Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116, 2417–2424, doi: 10.1175/1520-0493(1988) 116<2417:SSBOTM>2.0.CO;2.

    Article  Google Scholar 

  • Nalder, I. A., and R. W. Wein, 1998: Spatial interpolation of climatic normals: Test of a new method in the Canadian boreal forest. Agric. Forest Meteor., 92, 211–225, doi: 10.1016/S0168-1923(98)00102-6.

    Article  Google Scholar 

  • Roeger, C., R. Stull, D. McClung, et al., 2003: Verification of mesoscale numerical weather forecasts in mountainous terrain for application to avalanche prediction. Wea. Forecasting, 18, 1140–1160, doi: 10.1175/1520-0434(2003)018< 1140:VOMNWF>2.0.CO;2.

    Article  Google Scholar 

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, et al., 2008: A description of the Advanced Research WRF Version 3. NCAR Tech. Note NCAR/TN-475+STR.

    Google Scholar 

  • Stahl, K., R. D. Moore, J. A. Floyer, et al., 2006: Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density. Agric. Forest Meteor., 139, 224–236, doi: 10.1016/j.agrformet.2006.07.004.

    Article  Google Scholar 

  • Stein, M. L., 1999: Interpolation of Spatial Data: Some Theory for Kriging. Springer Series in Statistics, New York, USA, 249 pp.

    Book  Google Scholar 

  • Stensrud, D. J., and J. A. Skindlov, 1996: Gridpoint predictions of high temperature from a mesoscale model. Wea. Forecasting, 11, 103–110, doi: 10.1175/1520-0434(1996)011<0103:GPOHTF> 2.0.CO;2.

    Article  Google Scholar 

  • Sweeney, C. P., P. Lynch, and P. Nolan, 2013: Reducing errors of wind speed forecasts by an optimal combination of postprocessing methods. Meteor. Appl., 20, 32–40, doi: 10.1002/met.2013.20.issue-1.

    Article  Google Scholar 

  • Wang, D., J. F. Miao, and D. L. Zhang, 2015: Numerical simulations of local circulation and its response to land cover changes over the Yellow Mountains of China. J. Meteor. Res., 29, 667–681, doi: 10.1007/s13351-015-4070-6.

    Article  Google Scholar 

  • Warner, T. T., 2011: Numerical Weather and Climate Prediction. Cambridge University Press, Cambridge, 550 pp.

    Google Scholar 

  • Wilks, D. S., and T. M. Hamill, 2007: Comparison of ensemble- MOS methods using GFS reforecasts. Mon. Wea. Rev., 135, 2379–2390, doi: 10.1175/MWR3402.1.

    Article  Google Scholar 

  • Yussouf, N., and D. J. Stensrud, 2006: Prediction of near-surface variables at independent locations from a bias-corrected ensemble forecasting system. Mon. Wea. Rev., 134, 3415–3424, doi: 10.1175/MWR3258.1.

    Article  Google Scholar 

  • Yuval, and W. W. Hsieh, 2003: An adaptive nonlinear MOS scheme for precipitation forecasts using neural networks. Wea. Forecasting, 18, 303–310, doi: 10.1175/1520-0434(2003)018<0303:AANMSF>2.0.CO;2.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to show our gratitude to Islamic Republic of Iran Meteorological Organization (IRIMO) for providing access to the observation data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Rahmani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, S.A., Azadi, M. & Rahmani, M. Comparison of spatial interpolation methods for gridded bias removal in surface temperature forecasts. J Meteorol Res 31, 791–799 (2017). https://doi.org/10.1007/s13351-017-6135-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-017-6135-1

Key words

Navigation