Skip to main content
Log in

Reducing the prediction uncertainties of high-impact weather and climate events: An overview of studies at LASG

  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

This paper summarizes recent progress at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences in studies on targeted observations, data assimilation, and ensemble prediction, which are three effective strategies to reduce the prediction uncertainties and improve the forecast skill of weather and climate events. Considering the limitations of traditional targeted observation approaches, LASG researchers have developed a conditional nonlinear optimal perturbation-based targeted observation strategy to optimize the design of the observing network. This strategy has been employed to identify sensitive areas for targeted observations of the El Niño–Southern Oscillation, Indian Ocean dipole, and tropical cyclones, and has been demonstrated to be effective in improving the forecast skill of these events. To assimilate the targeted observations into the initial state of a numerical model, a dimension-reducedprojection- based four-dimensional variational data assimilation (DRP-4DVar) approach has been proposed and is used operationally to supply accurate initial conditions in numerical forecasts. The performance of DRP-4DVar is good, and its computational cost is much lower than the standard 4DVar approach. Besides, ensemble prediction, which is a practical approach to generate probabilistic forecasts of the future state of a particular system, can be used to reduce the prediction uncertainties of single forecasts by taking the ensemble mean of forecast members. In this field, LASG researchers have proposed an ensemble forecast method that uses nonlinear local Lyapunov vectors (NLLVs) to yield ensemble initial perturbations. Its application in simple models has shown that NLLVs are more useful than bred vectors and singular vectors in improving the skill of the ensemble forecast. Therefore, NLLVs represent a candidate for possible development as an ensemble method in operational forecasts. Despite the considerable efforts made towards developing these methods to reduce prediction uncertainties, much challenging but highly important work remains in terms of improving the methods to further increase the skill in forecasting such weather and climate events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aberson, S. D., 2010: 10 years of hurricane synoptic surveillance (1997–2006). Mon. Wea. Rev., 138, 1536–1549.

    Article  Google Scholar 

  • Ashok, K., S. K. Behera, S. A. Rao, et al., 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007.

    Article  Google Scholar 

  • Bishop, C. H., and Z. Toth, 1999: Ensemble transformation and adaptive observations. J. Atmos. Sci., 56, 1748–1765.

    Article  Google Scholar 

  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420–436.

    Google Scholar 

  • Blanke, B., J. D. Neelin, and D. Gutzler, 1997: Estimating the effect of stochastic wind stress forcing on ENSO irregularity. J. Climate, 10, 1473–1486.

    Article  Google Scholar 

  • Buizza, R., 1997: Potential forecast skill of ensemble prediction and spread and skill distributions of the ECMWF Ensemble Prediction System. Mon. Wea. Rev., 125, 99–119.

    Article  Google Scholar 

  • Buizza, R., and A. Montani, 1999: Targeting observations using singular vectors. J. Atmos. Sci., 56, 2965–2985.

    Article  Google Scholar 

  • Chen, B. Y., M. Mu, and X. H. Qin, 2013: The impact of assimilating dropwindsonde data deployed at different sites on typhoon track forecasts. Mon. Wea. Rev., 141, 2669–2682.

    Article  Google Scholar 

  • Chen, L., 2015: Similarity of optimally growing initial errors and optimal precursors for ENSO and its application for recognizing sensitive area. Ph. D. dissertation, University of Chinese Academy of Sciences, Beijing, 151 pp. (in Chinese)

    Google Scholar 

  • Chevallier, F., P. Lopez, A. M. Tompkins, et al., 2004: The capability of 4D-Var systems to assimilate cloud-affected satellite infrared radiances. Quart. J. Roy. Meteor. Soc., 130, 917–932.

    Article  Google Scholar 

  • Chou, K. H., C. C. Wu, P. H. Lin, et al., 2011: The impact of dropwindsonde observations on typhoon track forecasts in DOTSTAR and T-PARC. Mon. Wea. Rev., 139, 1728–1743.

    Article  Google Scholar 

  • Descamps, L., and O. Talagrand, 2007: On some aspects of the definition of initial conditions for ensemble prediction. Mon. Wea. Rev., 135, 3260–3272.

    Article  Google Scholar 

  • Duan, W. S., and R. Zhang, 2010: Is model parameter error related to a significant spring predictability barrier for El Niño events? Results from a theoretical model Adv. Atmos. Sci., 27, 1003–1013.

    Article  Google Scholar 

  • Duan, W. S., and F. F. Zhou, 2013: Non-linear forcing singular vector of a two-dimensional quasi-geostrophic model. Tellus A, 65, 18452.

    Article  Google Scholar 

  • Duan, W. S., and P. Zhao, 2015: Revealing the most disturbing tendency error of Zebiak–Cane model associated with El Niño predictions by nonlinear forcing singular vector approach. Climate Dyn., 44, 2351–2367.

    Article  Google Scholar 

  • Duan, W. S., and J. Y. Hu, 2016: The initial errors that induce a significant “spring predictability barrier” for El Niño events and their implications for target observation: Results from an earth system model. Climate Dyn., 46, 3599–3615, doi: 10.1007/ s00382-015-2789-5.

    Article  Google Scholar 

  • Duan, W. S., X. C. Liu, K. Y. Zhu, et al., 2009: Exploring the initial errors that cause a significant “spring predictability barrier” for El Niño events. J. Geophys. Res., 114, C04022.

    Google Scholar 

  • Duan, W. S., B. Tian, and H. Xu, 2014: Simulations of two types of El Niño events by an optimal forcing vector approach. Climate Dyn., 43, 1677–1692.

    Article  Google Scholar 

  • Duan, W. S., P. Zhao, J. Y. Hu, et al., 2016: The role of nonlinear forcing singular vector tendency error in causing the “Spring Predictability Barrier” for ENSO. J. Meteor. Res., 30, 853–866, doi: 10.1007/s13351-016-6011-4.

    Article  Google Scholar 

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143–10162.

    Article  Google Scholar 

  • Feng, J., R. Q. Ding, D. Q. Liu, et al., 2014: The application of nonlinear local Lyapunov vectors to ensemble predictions in Lorenz systems. J. Atmos. Sci., 71, 3554–3567.

    Article  Google Scholar 

  • Feng, R., and W. S. Duan, 2014: The spatial patterns of initial errors related to the “winter predictability barrier” of the Indian Ocean dipole. Atmos. Oceanic Sci. Lett., 7, 406–410, doi: 10.3878/jissn.1674-2834.14.0018.

    Article  Google Scholar 

  • Feng, R., W. S. Duan, and M. Mu, 2016: Estimating observing locations for advancing beyond the winter predictability barrier of Indian Ocean dipole event predictions. Climate Dyn., doi: 10.1007/s00382-016-3134-3.

    Google Scholar 

  • Gauthier, P., and J. N. Thépaut, 2001: Impact of the digital filter as a weak constraint in the preoperational 4DVAR assimilation system of Météo-France. Mon. Wea. Rev., 129, 2089–2102.

    Article  Google Scholar 

  • Gauthier, P., M. Tanguay, S. Laroche, et al., 2007: Extension of 3DVAR to 4DVAR: Implementation of 4DVAR at the meteorological service of Canada. Mon. Wea. Rev., 135, 2339–2353.

    Article  Google Scholar 

  • Ham, Y. G., and J. S. Kug, 2012: How well do current climate models simulate two types of El Niño? Climate Dyn., 39, 383–398.

    Article  Google Scholar 

  • Hamill, T. M., and C. Snyder, 2002: Using improved backgrounderror covariances from an ensemble Kalman filter for adaptive observations. Mon. Wea. Rev., 130, 1552–1572.

    Article  Google Scholar 

  • Honda, Y., M. Nishijima, K. Koizumi, et al., 2005: A pre-operational variational data assimilation system for a non-hydrostatic model at the Japan Meteorological Agency: Formulation and preliminary results. Quart. J. Roy. Meteor. Soc., 131, 3465–3475.

    Article  Google Scholar 

  • Houtekamer, P. L., and J. Derome, 1995: Methods for ensemble prediction. Mon. Wea. Rev., 123, 2181–2196.

    Article  Google Scholar 

  • International CLIVAR Project Office, 2006: Report of the Third Meeting of the CLIVAR-GOOS Indian Ocean Panel, Honolulu, USA. International CLIVAR Project Office, Southampton, UK, 32 pp.

    Google Scholar 

  • Järvinen, H., E. Andersson, and F. Bouttier, 1999: Variational assimilation of time sequences of surface observations with serially correlated errors. Tellus A, 51, 469–488.

    Article  Google Scholar 

  • Kao, H. Y., and J. Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615–632.

    Article  Google Scholar 

  • Klinker, E., F. Rabier, G. Kelly, et al., 2000: The ECMWF operational implementation of four-dimensional variational assimilation. III: Experimental results and diagnostics with operational configuration. Quart. J. Roy. Meteor. Soc., 126, 1191–1215.

    Article  Google Scholar 

  • Kramer, K., and H. A. Dijkstra, 2013: Optimal localized observations for advancing beyond the ENSO predictability barrier. Nonlinear Processes in Geophysics, 20, 221–230.

    Article  Google Scholar 

  • Kug, J. S., F. F. Jin, and S. I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499–1515.

    Article  Google Scholar 

  • Latif, M., D. Anderson, T. Barnett, et al., 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103(C7), 14375–14393.

    Article  Google Scholar 

  • Liu, C. S., Q. N. Xiao, and B. Wang, 2008: An ensemble-based four-dimensional variational Data Assimilation Scheme. Part I: Technical formulation and preliminary test. Mon. Wea. Rev., 136, 3363–3373.

    Article  Google Scholar 

  • Liu, J. J., 2009: A timesaving approach to four-dimensional variational data assimilation and its application in the simulation of rainstorm. Ph. D. dissertation, Beijing, University of Chinese Academy of Sciences, 139 pp.

    Google Scholar 

  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141.

    Article  Google Scholar 

  • Masumoto, Y., W. Yu, G. Meyers, et al., 2009: Observing systems in the Indian Ocean. Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society, ESA Publication, Venice, Italy, 21–25.

    Google Scholar 

  • McPhaden, M. J., A. J. Busalacchi, R. Cheney, et al., 1998: The tropical ocean–global atmosphere observing system: A decade of progress. J. Geophys. Res., 103(C7), 14169–14240.

    Article  Google Scholar 

  • McPhaden, M. J., T. Delcroix, K. Hanawa, et al., 2001: The El Niño/Southern Oscillation (ENSO) observing system. Observing the Ocean in the 21st Century. Koblinsky, C. J., and N. R. Smith, Eds., Australian Bureau of Meteorology, Melbourne, Australia, 231–246.

    Google Scholar 

  • McPhaden, M. J., A. J. Busalacchi, and D. L. T. Anderson, 2010: A TOGA retrospective. Oceanography, 23, 86–103.

    Article  Google Scholar 

  • Molteni, F., and T. N. Palmer, 1993: Predictability and finite-time instability of the northern winter circulation. Quart. J. Roy. Meteor. Soc., 119, 269–298.

    Google Scholar 

  • Molteni, F., R. Buizza, T. N. Palmer, et al., 1996: The new ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73–119.

    Article  Google Scholar 

  • Morss, R. E., and D. S. Battisti, 2004a: Evaluating observing requirements for ENSO prediction: Experiments with an intermediate coupled model. J. Climate, 17, 3057–3073.

    Article  Google Scholar 

  • Morss, R. E., and D. S. Battisti, 2004b: Designing efficient observing networks for ENSO prediction. J. Climate, 17, 3074–3089.

    Article  Google Scholar 

  • Mu, M., 2013: Methods, current status, and prospect of targeted observation. Sci. China (Ser. D), 56, 1997–2005.

    Article  Google Scholar 

  • Mu, M., W. S. Duan, and J. C. Wang, 2002: The predictability problems in numerical weather and climate prediction. Adv. Atmos. Sci., 19, 191–204.

    Article  Google Scholar 

  • Mu, M., W. S. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications. Nonlinear Process in Geophysics, 10, 493–501.

    Article  Google Scholar 

  • Mu, M., W. S. Duan, and B. Wang, 2007: Season-dependent dynamics of nonlinear optimal error growth and El Niño–Southern Oscillation predictability in a theoretical model. J. Geophys. Res., 112(D10), D10113.

    Article  Google Scholar 

  • Mu, M., Q. Wang, W. S. Duan, et al., 2014a: Application of conditional nonlinear optimal perturbation to targeted observation studies of the atmosphere and ocean. J. Meteor. Res., 28, 923–933, doi: 10.1007/s13351-014-4057-8.

    Article  Google Scholar 

  • Mu, M., Y. S. Yu, H. Xu, et al., 2014b: Similarities between optimal precursors for ENSO events and optimally growing initial errors in El Niño predictions. Theor. Appl. Climatol., 115, 461–469, doi: 10.1007/s00704-013-0909-x.

    Article  Google Scholar 

  • Mu, M., W. S. Duan, D. K. Chen, et al., 2015: Target observations for improving initialization of high-impact ocean–atmospheric environmental events forecasting. National Science Review, 2, 226–236.

    Article  Google Scholar 

  • Palmer, T. N., R. Gelaro, J. Barkmeijer, et al., 1998: Singular vectors, metrics, and adaptive observations. J. Atmos. Sci., 55, 633–653.

    Article  Google Scholar 

  • Qin, X. H., and M. Mu, 2012: Influence of conditional nonlinear optimal perturbations sensitivity on typhoon track forecasts. Quart. J. Roy. Meteor. Soc., 138, 185–197.

    Article  Google Scholar 

  • Qiu, C., and J. Chou, 2006: Four-dimensional data assimilation method based on SVD: Theoretical aspect. Theor. Appl. Climatol., 83, 51–57.

    Article  Google Scholar 

  • Rawlins, F., S. P. Ballard, K. J. Bovis, et al., 2007: The Met Office global four-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 133, 347–362.

    Article  Google Scholar 

  • Snyder, C., 1996: Summary of an informal workshop on adaptive observations and FASTEX. Bull. Amer. Meteor. Soc., 77, 953–961.

    Google Scholar 

  • Sun, J. Z., and Y. Zhang, 2008: Analysis and prediction of a squall line observed during IHOP using multiple WSR-88D observations. Mon. Wea. Rev., 136, 2364–2388.

    Article  Google Scholar 

  • Tian, B., and W. S. Duan, 2016: Comparison of the initial errors most likely to cause a spring predictability barrier for two types of El Niño events. Climate Dyn., 47, 779–792, doi: 10.1007/s00382-015-2870-0.

    Article  Google Scholar 

  • Tian, X. J., Z. H. Xie, and A. G. Dai, 2008: An ensemble-based explicit four-dimensional variational assimilation method. J. Geophys. Res., 113(D21), doi: 10.1029/2008JD010358.

    Google Scholar 

  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 2317–2330.

    Article  Google Scholar 

  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 3297–3319.

    Article  Google Scholar 

  • Wang, B., J. J. Liu, S. D. Wang, et al., 2010: An economical approach to four-dimensional variational data assimilation. Adv. Atmos. Sci., 27, 715–727, doi: 10.1007/s00376-009-9122-3.

    Article  Google Scholar 

  • Weissmann, M., F. Harnisch, C. C. Wu, et al., 2011: The influence of assimilating dropsonde data on typhoon track and midlatitude forecasts. Mon. Wea. Rev., 139, 908–920.

    Article  Google Scholar 

  • Williams, P. D., 2005: Modelling climate change: The role of unresolved processes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363, 2931–2946.

    Article  Google Scholar 

  • Xiao, Q. N., X. L. Zou, and B. Wang, 2000: Initialization and simulation of a landfalling hurricane using a variational bogus data assimilation scheme. Mon. Wea. Rev., 128, 2252–2269.

    Article  Google Scholar 

  • Yu, Y. S., W. S. Duan, H. Xu, et al., 2009: Dynamics of nonlinear error growth and season-dependent predictability of El Niño events in the Zebiak–Cane model. Quart. J. Roy. Meteor. Soc., 135, 2146–2160.

    Article  Google Scholar 

  • Yu, Y. S., M. Mu, and W. S. Duan, 2012: Does model parameter error cause a significant “Spring Predictability Barrier” for El Niño events in the Zebiak–Cane Model? J. Climate, 25, 1263–1277.

    Article  Google Scholar 

  • Zhang, J., 2015: Sensitive areas for targeted observation associated with ENSO Predictions and its application in the predictions of the tropical pacific climate variability. Ph. D. dissertation, Nanjing University of Information Science & Technology, Nanjing, 132 pp. (in Chinese)

    Google Scholar 

  • Zhang, J., W. S. Duan, and X. F. Zhi, 2015: Using CMIP5 model outputs to investigate the initial errors that cause the “spring predictability barrier” for El Niño events. Sci. China (Ser. D), 58, 686–696.

    Google Scholar 

  • Zhang, L., and Y. Q. Ni, 2005: Four-dimensional variational data assimilation experiments for a heavy rain case during the 2002 IOP in China. Adv. Atmos. Sci., 22, 300–312.

    Article  Google Scholar 

  • Zhang, R. H., S. E. Zebiak, R. Kleeman, et al., 2003: A new intermediate coupled model for El Niño simulation and prediction. Geophys. Res. Lett., 30, doi: 10.1029/2003GL018010.

  • Zhao, Y., B. Wang, Z. Z. Ji, et al., 2005: Improved track forecasting of a typhoon reaching landfall from four-dimensional variational data assimilation of AMSU-A retrieved data. J. Geophys. Res., 110(D14), D14101, doi: 10.1029/2004JD 005267.

    Article  Google Scholar 

  • Zou, X., and Y. H. Kuo, 1996: Rainfall assimilation through an optimal control of initial and boundary conditions in a limitedarea mesoscale model. Mon. Wea. Rev., 124, 2859–2882.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Drs. Ruiqiang Ding, Juanjuan Liu, Xiaohao Qin, and Junya Hu for providing material for, and assisting with the writing of, this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Feng.

Additional information

Supported by the China Meteorological Administration Special Public Welfare Research Fund (GYHY201306018) and National Natural Science Foundation of China (41525017 and 41506032).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, W., Feng, R. Reducing the prediction uncertainties of high-impact weather and climate events: An overview of studies at LASG. J Meteorol Res 31, 224–235 (2017). https://doi.org/10.1007/s13351-016-6099-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-016-6099-6

Key words

Navigation