Skip to main content
Log in

A special MJO event with a double Kelvin wave structure

  • Regular Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The second Madden–Julian Oscillation (MJO) event during the field campaign of the Dynamics of the MJO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (DYNAMO/CINDY2011) exhibi ted an unusual double rainband structure. Using a wavenumber-frequency spectral filtering method, we unveil that this double rainband structure arises primarily from the Kelvin wave component. The zonal phase speed of the double rainbands is about 7.9 degree per day in the equatorial Indian Ocean, being in the range of convectively coupled Kelvin wave phase speeds. The convection and circulation anomalies associated with the Kelvin wave component are characterized by two anomalous convective cells, with low-level westerly (easterly) and high (low) pressure anomalies to the west (east) of the convective centers, and opposite wind and pressure anomalies in the upper troposphere. Such a zonal wind–pressure phase relationship is consistent with the equatorial free-wave dynamics. While the free-atmospheric circulation was dominated by the first baroclinic mode vertical structure, moisture and vertical motion in the boundary layer led the convection.

The convection and circulation structures derived based on the conventional MJO filter show a different characteristic. For example, the phase speed is slower (about 5.9 degree per day), and there were no double convective branches. This suggests that MJO generally involves multi-scales and it is incomplete to extract its signals by using the conventional filtering technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adames, Á. F., and J. M. Wallace, 2014: Three-dimensional structure and evolution of the MJO and its relation to the mean flow. J. Atmos. Sci., 71, 2007–2026, doi: 10.1175/JAS-D-13-0254.1.

    Article  Google Scholar 

  • Annamalai, H., and J. M. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18, 85–102, doi: 10.1007/s003820100161.

    Article  Google Scholar 

  • Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERAInterim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi: 10.1002/qj.828.

    Article  Google Scholar 

  • Gottschalck, J., P. E. Roundy, C. J. Schreck III, et al., 2013: Largescale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Mon. Wea. Rev., 141, 4173–4196, doi: 10.1175/MWR-D-13-00022.1.

    Article  Google Scholar 

  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian Oscillation. J. Atmos. Sci., 51, 2225–2237, doi: 10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.

    Article  Google Scholar 

  • Hsu, P.-C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian Oscillation. J. Climate, 25, 4914–4931, doi: 10.1175/JCLI-D-11-00310.1.

    Article  Google Scholar 

  • Jiang, X. A., D. E. Waliser, W. S. Olson, et al., 2011: Vertical diabatic heating structure of the MJO: Intercomparison between recent reanalyses and TRMM estimates. Mon. Wea. Rev., 139, 3208–3223, doi: 10.1175/2011MWR3636.1.

    Article  Google Scholar 

  • Kerns, B. W., and S. S. Chen, 2014: Equatorial dry air intrusion and related synoptic variability in MJO initiation during DYNAMO. Mon. Wea. Rev., 142, 1326–1343, doi: 10.1175/MWR-D-13-00159.1.

    Article  Google Scholar 

  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian Oscillation. J. Atmos. Sci., 62, 2790–2809, doi: 10.1175/JAS3520.1.

    Article  Google Scholar 

  • Krishnamurti, T. N., and D. Subrahmanyam, 1982: The 30–50-day mode at 850 mb during MONEX. J. Atmos. Sci., 39, 2088–2095, doi: 10.1175/1520-0469(1982)039<2088:TDMAMD>2.0.CO;2.

    Article  Google Scholar 

  • Lau, K.-M., and P. H. Chan, 1986: Aspects of the 40–50-day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114, 1354–1367, doi: 10.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2.

    Article  Google Scholar 

  • Lau, K.-M., and D. E. Waliser, 2012: Intraseasonal Variability in the Atmosphere–Ocean Climate System. 2nd Ed. Springer, Berlin Heidelberg, 613 pp, doi: 10.1007/978-3-642-13914-7.

    Book  Google Scholar 

  • Li, T., 2014: Recent advance in understanding the dynamics of the Madden–Julian Oscillation. J. Meteor. Res., 28, 1–33, doi: 10.1007/s13351-014-3087-6.

    Google Scholar 

  • Li, T., and B. Wang, 2005: A review on the western North Pacific monsoon: Synoptic-to-interannual variabilities. Terrestrial, Atmospheric and Oceanic Sciences, 16, 285–314, doi: 10.3319/TAO.2005.16.2.285(A).

    Article  Google Scholar 

  • Li, T., and C. H. Zhou, 2009: Planetary scale selection of the Madden–Julian Oscillation. J. Atmos. Sci., 66, 2429–2443, doi: 10.1175/2009JAS2968.1.

    Article  Google Scholar 

  • Li, T., C. B. Zhao, P.-C. Hsu, et al., 2015: MJO initiation processes over the tropical Indian Ocean during DYNAMO/CINDY2011. J. Climate, 28, 2121–2135, doi: 10.1175/JCLID-14-00328.1.

    Article  Google Scholar 

  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275–1277.

    Google Scholar 

  • Ling, J., and C. D. Zhang, 2011: Structural evolution in heating profiles of the MJO in global reanalyses and TRMM retrievals. J. Climate, 24, 825–842, doi: 10.1175/2010JCLI3826.1.

    Article  Google Scholar 

  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50-day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708, doi: 10.1175/1520-0469(1971)028<0702: DOADOI>2.0.CO;2.

    Article  Google Scholar 

  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50-day period. J. Atmos. Sci., 29, 1109–1123, doi: 10.1175/1520-0469(1972)029 <1109:DOGSCC>2.0.CO;2.

    Article  Google Scholar 

  • Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian Oscillation. J. Climate, 11, 2387–2403, doi: 10.1175/1520-0442(1998)011<2387:FMCIAC>2.0.CO;2.

    Article  Google Scholar 

  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 25–43.

    Article  Google Scholar 

  • Murakami, T., and T. Nakazawa, 1985: Tropical 45-day oscillations during the 1979 Northern Hemisphere summer. J. Atmos. Sci., 42, 1107–1122, doi: 10.1175/1520-0469(1985)042< 1107:TDODTN>2.0.CO;2.

    Article  Google Scholar 

  • Nasuno, T., H. Tomita, S. Iga, et al., 2008: Convectively coupled equatorial waves simulated on an aquaplanet in a global nonhydrostatic experiment. J. Atmos. Sci., 65, 1246–1265, doi: 10.1175/2007JAS2395.1.

    Article  Google Scholar 

  • Roundy, P. E., 2008: Analysis of convectively coupled Kelvin waves in the Indian Ocean MJO. J. Atmos. Sci., 65, 1342–1359, doi: 10.1175/2007JAS2345.1.

    Article  Google Scholar 

  • Roundy, P. E., 2012a: Observed structure of convectively coupled waves as a function of equivalent depth: Kelvin waves and the Madden–Julian Oscillation. J. Atmos. Sci., 69, 2097–2106, doi: 10.1175/JAS-D-12-03.1.

    Article  Google Scholar 

  • Roundy, P. E., 2012b: The spectrum of convectively coupled Kelvin waves and the Madden–Julian Oscillation in regions of low-level easterly and westerly background flow. J. Atmos. Sci., 69, 2107–2111, doi: 10.1175/JAS-D-12-060.1.

    Article  Google Scholar 

  • Roundy, P. E., and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 2105–2132, doi: 10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2.

    Article  Google Scholar 

  • Sperber, K. R., 2003: Propagation and the vertical structure of the Madden–Julian Oscillation. Mon. Wea. Rev., 131, 3018–3037, doi: 10.1175/1520-0493(2003)131<3018:PATVSO>2.0.CO;2.

    Article  Google Scholar 

  • Straub, K. H., and G. N. Kiladis, 2003: The observed structure of convectively coupled Kelvin waves: Comparison with simple models of coupled wave instability. J. Atmos. Sci., 60, 1655–1668, doi: 10.1175/1520-0469(2003)060<1655:TOSOCC> 2.0.CO;2.

    Article  Google Scholar 

  • Waliser, D. E., 2006: Intraseasonal variability. The Asian Monsoon. Wang, B, Ed., Springer, Berlin Heidelberg, 203–257, doi: 10.1007/3-540-37722-0_5.

    Chapter  Google Scholar 

  • Wang, B., and H. L. Rui, 1990: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial β-plane. J. Atmos. Sci., 47, 397–413, doi: 10.1175/1520-0469(1990)047<0397: DOTCMK>2.0.CO;2.

    Article  Google Scholar 

  • Wang, B., and T. M. Li, 1994: Convective interaction with boundarylayer dynamics in the development of a tropical intraseasonal system. J. Atmos. Sci., 51, 1386–1400, doi: 10.1175/1520-0469(1994)051<1386:CIWBLD>2.0.CO;2.

    Article  Google Scholar 

  • Wang, L., and T. Li, 2016: Roles of convective heating and boundaryayer moisture asymmetry in slowing down the convectively coupled Kelvin waves. Climate Dyn., 1–17, doi: 10.1007/s00382-016-3215-3.

    Google Scholar 

  • Weickmann, K. M., 1983: Intraseasonal circulation and outgoing longwave radiation modes during Northern Hemisphere winter. Mon. Wea. Rev., 111, 1838–1858, doi: 10.1175/1520-0493(1983)111<1838:ICAOLR>2.0.CO;2.

    Article  Google Scholar 

  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374–399, doi 1: 0.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    Article  Google Scholar 

  • Yang, G. Y., B. Hoskins, and J. Slingo, 2007: Convectively coupled equatorial waves. Part II: Propagation characteristics. J. Atmos. Sci., 64, 3424–3437, doi: 10.1175/JAS4018.1.

    Article  Google Scholar 

  • Yoneyama, K., C. D. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian Oscillation. Bull. Amer. Meteor. Soc., 94, 1871–1891, doi: 10.1175/BAMS-D-12-00157.1.

    Article  Google Scholar 

  • Zeng, Z., S. P. Ho, S. Sokolovskiy, et al., 2012: Structural evolution of the Madden–Julian Oscillation from COSMIC radio occultation data. J. Geophys. Res., 117, D22108, doi: 10.1029/2012JD017685.

    Article  Google Scholar 

  • Zhang, C. D., 2005: Madden–Julian Oscillation. Rev. Geophys., 43, RG2003, doi: 10.1029/2004RG000158.

    Google Scholar 

Download references

Acknowledgments

Constructive comments provided by Dr. Paul Roundy and anonymous reviewers were greatly appreciated. The authors thank Drs. Pang-Chi Hsu and Mingcheng Chen for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Li.

Additional information

Supported by the National (Key) Basic Research and Development (973) Program of China (2015CB453200), National Natural Science Foundation of China (41475084, 41630423, 41575052, and 41375095), US National Science Foundation (AGS-1643297), US Office of Naval Research (N00014-16-12260), US Naval Research Laboratory (N00173-16-1-G906), Jiangsu Natural Science Foundation Key Project (BK20150062) of China, and Jiangsu Shuang-Chuang Team Fund (R2014SCT001) of China. This is SOEST contribution number 9819, IPRC contribution number 1211, and ESMC number 126.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Li, T. A special MJO event with a double Kelvin wave structure. J Meteorol Res 31, 295–308 (2017). https://doi.org/10.1007/s13351-016-6004-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-016-6004-3

Key words

Navigation