Skip to main content
Log in

Szczarba’s twisting cochain and the Eilenberg–Zilber maps

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

We show that Szczarba’s twisting cochain for a twisted Cartesian product is essentially the same as the one constructed by Shih. More precisely, Szczarba’s twisting cochain can be obtained via the basic perturbation lemma if one uses a ‘reversed’ version of the classical Eilenberg–Mac Lane homotopy for the Eilenberg–Zilber contraction. Along the way we prove several new identities involving these homotopies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This is a misnomer. All three maps were introduced by Eilenberg–Mac Lane [3, Eq. (5.3)], [4, Eqs. (2.8), (2.13)], with the obvious inspiration for the Alexander–Whitney map.

  2. Contrary to the claim made in [15, Thm. 6.2], Eilenberg–Mac Lane’s homotopy (3.4) does not satisfy \(d(H) = 1-\nabla AW\). The sign exponent \(n-p-q=1\) is erroneously not taken into account when the equations (65) and (70) are compared in [15, p. 85].

  3. The proof of the identity \(HH=0\) in [17, p. 26] implicitly uses an argument like Lemma 2.1 (i).

  4. Given that Gugenheim swapped the factors of the twisted tensor product compared to Shih, he might have been thinking of the homotopy \(\tilde{H}\) defined in (4.8) below, compare Propositions 4.5 and 4.6.

  5. The sign in the twisting cochain condition is given incorrectly in [17, p. 29] and [16, Def. 3.2.6], but the same sign is correct in [18, p. 198] and [9, Def. 2.3]. This difference is explained by the different orders of the factors in the twisted tensor product, compare [12, Def. II.1.4].

  6. Szczarba calls \(\varphi (x)=-(-1)^{|x|}\,t(x)\) a twisting cochain. Also note that he does not use the Koszul sign convention, so that he has \((f\otimes g)(x\otimes y)=f(x)\,g(y)\) without the sign \((-1)^{|g||x|}\). That Szczarba’s maps \(t_{{\mathrm {sz}}}\) and \(\psi \) are well-defined on normalized complexes is shown in [7, App. B].

  7. In the definition of \(\psi \) in [18, p. 201] the upper summation index should read “\(p!\)”.

References

  1. Brown, E.H.: Twisted tensor products, I. Ann. Math. 69, 223–246 (1959). https://doi.org/10.2307/1970101

    Article  MathSciNet  MATH  Google Scholar 

  2. Brown, R.: The twisted Eilenberg–Zilber theorem, pp. 33–37. In: Sierpiński, W., Kuratowski, K. (eds.) Simposio di Topologia (Siracusa, 1964), Edizioni Oderisi, Gubbio (1965). http://groupoids.org.uk/pdffiles/twistedez.pdf

  3. Eilenberg, S., Mac, S.: Lane, on the groups \(H(\Pi, n)\), I. Ann. Math. 58, 55–106 (1953). https://doi.org/10.2307/1969820

    Article  MathSciNet  Google Scholar 

  4. Eilenberg, S., Mac, S.: Lane, on the groups \(H(\Pi, n)\), II. Ann. Math. 60, 49–139 (1954). https://doi.org/10.2307/1969702

    Article  MathSciNet  Google Scholar 

  5. Eilenberg, S., Moore, J.C.: Homology and fibrations I: coalgebras, cotensor product and its derived functors. Comment. Math. Helv. 40, 199–236 (1966). https://doi.org/10.1007/BF02564371

    Article  MathSciNet  MATH  Google Scholar 

  6. Franz, M.: Koszul duality for tori, doctoral dissertation, University of Konstanz (2001). http://math.sci.uwo.ca/mfranz/papers/diss.pdf

  7. Franz, M.: Szczarba’s twisting cochain is comultiplicative. arXiv:2008.08943v1

  8. González-Díaz, R., Real, P.: A combinatorial method for computing Steenrod squares. J. Pure Appl. Algebra 139, 89–108 (1999). https://doi.org/10.1016/S0022-4049(99)00006-7

    Article  MathSciNet  MATH  Google Scholar 

  9. Gugenheim, V.K.A.M.: On the chain-complex of a fibration. Illinois J. Math. 16, 398–414 (1972). https://doi.org/10.1215/ijm/1256065766

    Article  MathSciNet  MATH  Google Scholar 

  10. Hess, K., Parent, P.-E., Scott, J., Tonks, A.: A canonical enriched Adams-Hilton model for simplicial sets. Adv. Math. 207, 847–875 (2006). https://doi.org/10.1016/j.aim.2006.01.013

    Article  MathSciNet  MATH  Google Scholar 

  11. Hess, K., Tonks, A.: The loop group and the cobar construction. Proc. Am. Math. Soc. 138, 1861–1876 (2010). https://doi.org/10.1090/S0002-9939-09-10238-1

    Article  MathSciNet  MATH  Google Scholar 

  12. Husemoller, D.H., Moore, J.C., Stasheff, J.: Differential homological algebra and homogeneous spaces. J. Pure Appl. Algebra 5, 113–185 (1974). https://doi.org/10.1016/0022-4049(74)90045-0

    Article  MathSciNet  MATH  Google Scholar 

  13. May, J.P.: Simplicial Objects in Algebraic Topology. Chicago University Press, Chicago (1992)

    MATH  Google Scholar 

  14. Morace, F., Prouté, A.: Brown’s natural twisting cochain and the Eilenberg–Mac Lane transformation. J. Pure Appl. Algebra 97, 81–89 (1994). https://doi.org/10.1016/0022-4049(94)90040-X

    Article  MathSciNet  MATH  Google Scholar 

  15. Real, P.: Homological perturbation theory and associativity. Homol. Homotopy Appl. 2, 51–88 (2000). https://doi.org/10.4310/hha.2000.v2.n1.a5

    Article  MathSciNet  MATH  Google Scholar 

  16. Rubio García, J.: Homologie effective des espaces de lacets itérés : un logiciel, doctoral dissertation, University of Joseph Fourier, Grenoble (1991). http://investigacion.unirioja.es/documentos/5c13b144c8914b6ed37762a8

  17. Shih, W.: Homologie des espaces fibrés. Publ. Math. IHES 13, 93–176 (1962)

    MATH  Google Scholar 

  18. Szczarba, R.H.: The homology of twisted cartesian products. Trans. Am. Math. Soc. 100, 197–216 (1961). https://doi.org/10.2307/1993317

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I thank Francis Sergeraert for sending me Rubio’s thesis [16].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Franz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was supported by an NSERC Discovery Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franz, M. Szczarba’s twisting cochain and the Eilenberg–Zilber maps. Collect. Math. 72, 569–586 (2021). https://doi.org/10.1007/s13348-020-00299-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-020-00299-x

Keywords

Mathematics Subject Classification

Navigation