Skip to main content
Log in

Atomic and maximal function characterizations of Musielak–Orlicz–Hardy spaces associated to non-negative self-adjoint operators on spaces of homogeneous type

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

Let \({\mathcal {X}}\) be a metric space with doubling measure and L be a non-negative self-adjoint operator on \(L^2({\mathcal {X}})\) whose heat kernels satisfy the Gaussian upper bound estimates. Assume that the growth function \(\varphi :\ {\mathcal {X}}\times [0,\infty ) \rightarrow [0,\infty )\) satisfies that \(\varphi (x,\cdot )\) is an Orlicz function and \(\varphi (\cdot ,t)\in {{\mathbb {A}}}_{\infty }({\mathcal {X}})\) (the class of uniformly Muckenhoupt weights). Let \(H_{\varphi ,\,L}({\mathcal {X}})\) be the Musielak–Orlicz–Hardy space defined via the Lusin area function associated with the heat semigroup of L. In this article, the authors characterize the space \(H_{\varphi ,\,L}({\mathcal {X}})\) by means of atoms, non-tangential and radial maximal functions associated with L. In particular, when \(\mu ({\mathcal {X}})<\infty \), the local non-tangential and radial maximal function characterizations of \(H_{\varphi ,\,L}({\mathcal {X}})\) are obtained. As applications, the authors obtain various maximal function and the atomic characterizations of the “geometric” Musielak–Orlicz–Hardy spaces \(H_{\varphi ,\,r}(\Omega )\) and \(H_{\varphi ,\,z}(\Omega )\) on the strongly Lipschitz domain \(\Omega \) in \({\mathbb {R}}^n\) associated with second-order self-adjoint elliptic operators with the Dirichlet and the Neumann boundary conditions; even when \(\varphi (x,t):=t\) for any \(x\in {\mathbb {R}}^n\) and \(t\in [0,\infty )\), the equivalent characterizations of \(H_{\varphi ,\,z}(\Omega )\) given in this article improve the known results via removing the assumption that \(\Omega \) is unbounded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Almeida, V., Betancor, J.J., Dalmasso, E., Rodríguez-Mesa, L.: Local Hardy spaces with variable exponents associated to non-negative self-adjoint operators satisfying Gaussian estimates. arXiv:1712.06710

  2. Anh, B.T., Li, J.: Orlicz–Hardy spaces associated to operators satisfying bounded \(H_{\infty }\) functional calculus and Davies–Gaffney estimates. J. Math. Anal. Appl. 373, 485–501 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auscher, P., Duong, X.T., McIntosh, A.: Boundedness of Banach space valued singular integral operators and Hardy spaces. Unpublished Manuscript (2005)

  4. Auscher, P., Russ, E.: Hardy spaces and divergence operators on strongly Lipschitz domains of \(R^n\). J. Funct. Anal. 201, 148–184 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Auscher, P., Tchamitchian, Ph.: Gaussian estimates for second order elliptic divergence operators on Lipschitz and \(C^1\) domains. In: Lumer, G., Weis, L. (eds.) Evolution Equations and Their Applications in Physical and Life Sciences (Bad Herrenalb, 1998), 15–32, Lecture Notes in Pure and Applied Math. 215, Dekker, New York (2001)

  6. Avci, M., Pankov, A.: Multivalued elliptic operators with nonstandard growth. Adv. Nonlinear Anal. 7, 35–48 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baroni, P., Colombo, M., Mingione, G.: Regularity for general functionals with double phase. Calc. Var. Partial Differ. Equ. 57(2), 62 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonami, A., Feuto, J., Grellier, S.: Endpoint for the DIV-CURL lemma in Hardy spaces. Publ. Mat. 54, 341–358 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonami, A., Grellier, S., Ky, L.D.: Paraproducts and products of functions in \(BMO({\mathbb{R}}^{n})\) and \(H^1({\mathbb{R}}^{n})\) through wavelets. J. Math. Pures Appl. (9) 97, 230–241 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonami, A., Iwaniec, T., Jones, P., Zinsmeister, M.: On the product of functions in \(BMO\) and \(H^1\). Ann. Inst. Fourier (Grenoble) 57, 1405–1439 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bui, T.A., Cao, J., Ky, L.D., Yang, D., Yang, S.: Weighted Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Taiwan. J. Math. 17, 1127–1166 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bui, T.A., Cao, J., Ky, L.D., Yang, D., Yang, S.: Musielak–Orlicz–Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Anal. Geom. Metr. Spaces 1, 69–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bui, T.A., Duong, X.T.: Regularity estimates for Green operators of Dirichlet and Neumann problems on weighted Hardy spaces. arXiv:1808.09639

  14. Bui, T.A., Duong, X.T., Ly, F.K.: Maximal function characterizations for Hardy spaces on spaces of homogeneous type with finite measure and applications. arXiv:1804.01347

  15. Bui, T.A., Duong, X.T., Ly, F.K.: Maximal function characterizations for new local Hardy type spaces on spaces of homogeneous type. Trans. Am. Math. Soc. 370, 7229–7292 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Calderón, A.: An atomic decomposition of distributions in parabolic \(H^p\) spaces. Adv. Math. 25, 216–225 (1977)

    Article  MATH  Google Scholar 

  17. Cao, J., Chang, D.-C., Yang, D., Yang, S.: Weighted local Orlicz–Hardy spaces on domains and their applications in inhomogeneous Dirichlet and Neumann problems. Trans. Am. Math. Soc. 365, 4729–4809 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cao, J., Chang, D.-C., Yang, D., Yang, S.: Riesz transform characterizations of Musielak–Orlicz–Hardy spaces. Trans. Am. Math. Soc. 368, 6979–7018 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chang, D.-C., Dafni, G., Stein, E.M.: Hardy spaces, \({\rm BMO}\) and boundary value problems for the Laplacian on a smooth domain in \({\mathbb{R}}^n\). Trans. Am. Math. Soc. 351, 1605–1661 (1999)

    Article  MATH  Google Scholar 

  20. Chang, D.-C., Fu, Z., Yang, D., Yang, S.: Real-variable characterizations of Musielak–Orlicz–Hardy spaces associated with Schrödinger operators on domains. Math. Methods Appl. Sci. 39, 533–569 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chang, D.-C., Krantz, S.G., Stein, E.M.: Hardy spaces and elliptic boundary value problems. Contemp. Math. 137, 119–131 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chang, D.-C., Krantz, S.G., Stein, E.M.: \(H^p\) theory on a smooth domain in \({{\mathbb{R}}}^N\) and elliptic boundary value problems. J. Funct. Anal. 114, 286–347 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cruz-Uribe, D., Neugebauer, C.J.: The structure of the reverse Hölder classes. Trans. Am. Math. Soc. 347, 2941–2960 (1995)

    MATH  Google Scholar 

  24. Coifman, R.R., Meyer, Y., Stein, E.M.: Some new function spaces and their applications to harmonic analysis. J. Funct. Anal. 62, 304–335 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. Coifman, R.R., Weiss, G.: Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, (French) Étude de Certaines Intégrales Singulières. Lecture Notes in Mathematics 242, Springer, Berlin (1971)

  26. Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  27. Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 218, 219–273 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics 92, Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  29. Dekel, S., Kerkyacharian, G., Kyriazis, G., Petrushev, P.: Hardy spaces associated with non-negative self-adjoint operators. Stud. Math. 239, 17–54 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Duong, X.T., Hofmann, S., Mitrea, D., Mitrea, M., Yan, L.: Hardy spaces and regularity for the inhomogeneous Dirichlet and Neumann problems. Rev. Math. Iberoam. 29, 183–236 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Duong, X.T., Li, J.: Hardy spaces associated to operators satisfying Davies–Gaffney estimates and bounded holomorphic functional calculus. J. Funct. Anal. 264, 1409–1437 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Duong, X.T., Yan, L.: On the atomic decomposition for Hardy spaces on Lipschitz domains of \({{\mathbb{R}}}^n\). J. Funct. Anal. 215, 476–486 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dziubański, J.: Note on \(H^1\) spaces related to degenerate Schrödinger operators. Ill. J. Math. 49, 1271–1297 (2005)

    Article  MATH  Google Scholar 

  34. Dziubański, J., Zienkiewicz, J.: \(H^p\) spaces for Schrödinger operators. In: Fourier Analysis and Related Topics, 45–53, Banach Center Publ., 56, Polish Acad. Sci., Warsaw (2002)

  35. Fefferman, C., Stein, E.M.: \(H^p\) spaces of several variables. Acta Math. 129, 137–193 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  36. Fu, X., Chang, D.-C., Yang, D.: Recent progress in bilinear decompositions. Appl. Anal. Optim. 1, 153–210 (2017)

    MathSciNet  Google Scholar 

  37. Fu, X., Yang, D.: Products of functions in \(H^1_\rho ({\cal{X}})\) and \({\rm BMO}_\rho ({\cal{X}})\) over RD-spaces and applications to Schrödinger operators. J. Geom. Anal. 27, 2938–2976 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Fu, X., Yang, D., Liang, Y.: Products of functions in \({\rm BMO}({\cal{X}})\) and \(H^1_{{\rm at}}({\cal{X}})\) via wavelets over spaces of homogeneous type. J. Fourier Anal. Appl. 23, 919–990 (2017)

    Article  MathSciNet  Google Scholar 

  39. Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics 250, 3rd edn. Springer, New York (2014)

    MATH  Google Scholar 

  40. Gwiazda, P., Skrzypczak, I., Zatorska-Goldstein, A.: Existence of renormalized solutions to elliptic equation in Musielak–Orlicz space. J. Differ. Equ. 264, 341–377 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Han, Y., Han, Y., Li, J., Tan, C.: Hardy and Carleson measure spaces associated with operators on spaces of homogeneous type. Potential Anal. 49, 247–265 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Harboure, E., Salinas, O., Viviani, B.: A look at \({\rm BMO}_\phi (\omega )\) through Carleson measures. J. Fourier Anal. Appl. 13, 267–284 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Harjulehto, P., Hästö, P., Latvala, V., Toivanen, O.: Critical variable exponent functionals in image restoration. Appl. Math. Lett. 26, 56–60 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Harjulehto, P., Hästö, P., Klèn, R.: Generalized Orlicz spaces and related PDE. Nonlinear Anal. 143, 155–173 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., Yan, L.: Hardy spaces associated to non-negative self-adjoint operators satisfying Davies–Gaffney estimates. Mem. Am. Math. Soc. 214(1007), vi+78 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Hofmann, S., Mayboroda, S.: Hardy and BMO spaces associated to divergence form elliptic operators. Math. Ann. 344, 37–116 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hofmann, S., Mayboroda, S., McIntosh, A.: Second order elliptic operators with complex bounded measurable coefficients in \(L^p\), Sobolev and Hardy spaces. Ann. Sci. Éc. Norm. Super. (4) 44, 723–800 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hou, S., Yang, D., Yang, S.: Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications. Commun. Contemp. Math. 15(6), 1350029 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Huang, J., Li, P., Liu, Y.: Regularity properties of the heat kernel and area integral characterization of Hardy space \(H^1_{{\cal{L}}}\) related to degenerate Schrödinger operators. J. Math. Anal. Appl. 466, 447–470 (2018)

    Article  MathSciNet  Google Scholar 

  50. Jiang, R., Yang, D.: New Orlicz–Hardy spaces associated with divergence form elliptic operators. J. Funct. Anal. 258, 1167–1224 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Jiang, R., Yang, D.: Orlicz–Hardy spaces associated with operators satisfying Davies–Gaffney estimates. Commun. Contemp. Math. 13, 331–373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Jiang, R., Yang, Da., Yang, Do.: Maximal function characterizations of Hardy spaces associated with magnetic Schrödinger operators. Forum Math. 24, 471–494 (2012)

  53. Johnson, R., Neugebauer, C.J.: Homeomorphisms preserving \(A_p\). Rev. Mat. Iberoam. 3, 249–273 (1987)

    Article  MATH  Google Scholar 

  54. Kbiri Alaoui, M., Nabil, T., Altanji, M.: On some new non-linear diffusion models for the image filtering. Appl. Anal. 93, 269–280 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  55. Ky, L.D.: Bilinear decompositions and commutators of singular integral operators. Trans. Am. Math. Soc. 365, 2931–2958 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  56. Ky, L.D.: New Hardy spaces of Musielak–Orlicz type and boundedness of sublinear operators. Integral Equ. Oper. Theory 78, 115–150 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  57. Liang, Y., Yang, D.: Intrinsic square function characterizations of Musielak–Orlicz Hardy spaces. Trans. Am. Math. Soc. 367, 3225–3256 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  58. Liu, L., Chang, D.-C., Fu, X., Yang, D.: Endpoint boundedness of commutators on spaces of homogeneous type. Appl. Anal. 96, 2408–2433 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  59. Liu, L., Chang, D.-C., Fu, X., Yang, D.: Endpoint estimates of linear commutators on Hardy spaces over spaces of homogeneous type. Math. Methods Appl. Sci. 41, 5951–5984 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  60. Liu, L., Yang, D., Yuan, W.: Bilinear decompositions for products of Hardy and Lipschitz spaces on spaces of homogeneous type. Diss. Math. 533, 93 (2018)

    MathSciNet  MATH  Google Scholar 

  61. Liu, S., Song, L.: An atomic decomposition of weighted Hardy spaces associated to self-adjoint operators. J. Funct. Anal. 265, 2709–2723 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  62. Matejczyk, B., Wróblewska-Kamińska, A.: Unsteady flows of heat-conducting non-Newtonian fluids in Musielak–Orlicz spaces. Nonlinearity 31, 701–727 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  63. Müller, S.: Hardy space methods for nonlinear partial differential equations. Tatra Mt. Math. Publ. 4, 159–168 (1994)

    MathSciNet  MATH  Google Scholar 

  64. Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics 1034, Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  65. Musielak, J., Orlicz, W.: On modular spaces. Stud. Math. 18, 49–65 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  66. Nakai, E., Yabuta, K.: Pointwise multipliers for functions of weighted bounded mean oscillation on spaces of homogeneous type. Math. Jpn. 46, 15–28 (1997)

    MathSciNet  MATH  Google Scholar 

  67. Nakano, H.: Modulared Semi-Ordered Linear Spaces. Maruzen Co., Ltd, Tokyo (1950)

    MATH  Google Scholar 

  68. Ouhabaz, E.M.: Analysis of Heat Equations on Domains. Princeton University Press, Princeton, NJ (2005)

    MATH  Google Scholar 

  69. Rao, M., Ren, Z.: Theory of Orlicz Spaces. Marcel Dekker Inc, New York (1991)

    MATH  Google Scholar 

  70. Russ, E.: The atomic decomposition for tent spaces on spaces of homogeneous type, In: CMA/AMSI Research Symposium “Asymptotic Geometric Analysis, Harmonic Analysis, and Related Topics”, 125–135, Proc. Centre Math. Appl. Austral. Nat. Univ., 42, Austral. Nat. Univ., Canberra (2007)

  71. Saloff-Coste, L.: Parabolic Harnack inequality for divergence-form second-order differential operators. Potential Anal. 4, 429–467 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  72. Song, L., Yan, L.: Riesz transforms associated to Schrödinger operators on weighted Hardy spaces. J. Funct. Anal. 259, 1466–1490 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  73. Song, L., Yan, L.: A maximal function characterization for Hardy spaces associated to nonnegative self-adjoint operators satisfying Gaussian estimates. Adv. Math. 287, 463–484 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  74. Song, L., Yan, L.: Maximal function characterizations for Hardy spaces associated with nonnegative self-adjoint operators on spaces of homogeneous type. J. Evol. Equ. 18, 221–243 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  75. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory integrals. Princeton University Press, Princeton, NJ (1993)

    MATH  Google Scholar 

  76. Stein, E.M., Weiss, G.: On the theory of harmonic functions of several variables. I. The theory of \(H^p\)-spaces. Acta Math. 103, 25–62 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  77. S̀wierczewska-Gwiazda, A.: Nonlinear parabolic problems in Musielak–Orlicz spaces. Nonlinear Anal. 98, 48–65 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  78. Yan, L.: Classes of Hardy spaces associated with operators, duality theorem and applications. Trans. Am. Math. Soc. 360, 4383–4408 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  79. Yang, D., Liang, Y., Ky, L.D.: Real-Variable Theory of Musielak–Orlicz Hardy Spaces. Lecture Notes in Mathematics 2182, Springer, Cham (2017)

    Book  MATH  Google Scholar 

  80. Yang, Da., Yang, Do.: Maximal function characterizations of Musielak–Orlicz–Hardy spaces associated with magnetic Schrödinger operators. Front. Math. China 10, 1203–1232 (2015)

  81. Yang, D., Yang, S.: Local Hardy spaces of Musielak–Orlicz type and their applications. Sci. China Math. 55, 1677–1720 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  82. Yang, D., Yang, S.: Orlicz–Hardy spaces associated with divergence operators on unbounded strongly Lipschitz domains of \({\mathbb{R}}^n\). Indiana Univ. Math. J. 61, 81–129 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  83. Yang, D., Yang, S.: Real-variable characterizations of Orlicz–Hardy spaces on strongly Lipschitz domains of \({\mathbb{R}}^{n}\). Rev. Math. Iberoam. 29, 237–292 (2013)

    Article  MATH  Google Scholar 

  84. Yang, D., Yang, S.: Musielak–Orlicz-Hardy spaces associated with operators and their applications. J. Geom. Anal. 24, 495–570 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  85. Yang, D., Yang, S.: Maximal function characterizations of Musielak–Orlicz–Hardy spaces associated to non-negative self-adjoint operators satisfying Gaussian estimates. Commun. Pure Appl. Anal. 15, 2135–2160 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  86. Yang, D., Yuan, W., Zhuo, C.: Musielak–Orlicz Besov-type and Triebel–Lizorkin-type spaces. Rev. Math. Complut. 27, 93–157 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  87. Yang, D., Zhang, J.: Variable Hardy spaces associated with operators satisfying Davies–Gaffney estimates on metric measure spaces of homogeneous type. Ann. Acad. Sci. Fenn. Math. 43, 47–87 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  88. Yang, D., Zhang, J., Zhuo, C.: Variable Hardy spaces associated with operators satisfying Davies–Gaffney estimates. Proc. Edinb. Math. Soc. (2) 61, 759–810 (2018)

    Article  MathSciNet  Google Scholar 

  89. Yang, D., Zhuo, C.: Molecular characterizations and dualities of variable exponent Hardy spaces associated with operators. Ann. Acad. Sci. Fenn. Math. 41, 357–398 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  90. Yang, D., Zhuo, C.: Maximal function characterizations of variable Hardy spaces associated with non-negative self-adjoint operators satisfying Gaussian estimates. Nonlinear Anal. 141, 16–42 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for her/his very careful reading and several valuable comments which indeed improve the presentation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dachun Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This project is supported by the National Natural Science Foundation of China (Grant Nos. 11871254, 11571289, 11571039, 11761131002, 11671185 and 11726621) and the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2018-111).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Yang, D. Atomic and maximal function characterizations of Musielak–Orlicz–Hardy spaces associated to non-negative self-adjoint operators on spaces of homogeneous type. Collect. Math. 70, 197–246 (2019). https://doi.org/10.1007/s13348-019-00237-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-019-00237-6

Keywords

Mathematics Subject Classification

Navigation