Skip to main content
Log in

A finite classification of (xy)-primary ideals of low multiplicity

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

Let S be a polynomial ring over an algebraically closed field k. Let x and y denote linearly independent linear forms in S so that \({\mathfrak {p}}= (x,y)\) is a height two prime ideal. This paper concerns the structure of \({\mathfrak {p}}\)-primary ideals in S. Huneke, Seceleanu, and the authors showed that for \(e \ge 3\), there are infinitely many pairwise non-isomorphic \({\mathfrak {p}}\)-primary ideals of multiplicity e. However, we show that for \(e \le 4\) there is a finite characterization of the linear, quadric and cubic generators of all such \({\mathfrak {p}}\)-primary ideals. We apply our results to improve bounds on the projective dimension of ideals generated by three cubic forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ananyan, T., Hochster, M.: Ideals generated by quadratic polynomials. Math. Res. Lett. 19, 233–244 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bruns, W., Herzog, J.: Cohen–Macaulay rings. In: Cambridge Stud. Adv. Math., vol. 39. Cambridge University Press, Cambridge (1993)

  3. Eisenbud, D.: Commutative algebra. With a view toward algebraic geometry. In: Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)

  4. Eisenbud, D., Goto, S.: Linear free resolutions and minimal multiplicity. J. Algebra 88, 89–133 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Engheta, B.: Bounds on projective dimension. Ph.D. Thesis, University of Kansas (2005)

  6. Engheta, B.: On the projective dimension and the unmixed part of three cubics. J. Algebra 316, 715–734 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Engheta, B.: A bound on the projective dimension of three cubics. J. Symb. Comput. 45, 60–73 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fløystad, G., McCullough, J., Peeva, I.: Three themes of syzygies. Bull. Am. Math. Soc. (N.S.) 53(3), 415–435 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huneke, C., Ulrich, B.: The structure of linkage. Ann. Math. 126, 277–334 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huneke, C., Mantero, P., McCullough, J., Seceleanu, A.: Multiple structures on linear varieties with high projective dimension. J. Algebra 447, 183–205 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huneke, C., Mantero, P., McCullough, J., Seceleanu, A.: A tight bound on the projective dimension of 4 quadrics. J. Pure Appl. Algebra (to appear)

  12. Macaulay 2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/

  13. Manolache, N.: Codimension two linear varieties with nilpotent structures. Math. Z. 210(4), 573–580 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Manolache, N.: Cohen–Macaulay nilpotent schemes. In: Andrica, D., Blaga, P.A. (eds.) Recent Advances in Geometry and Topology, pp. 235–248. Cluj University Press, Cluj-Napoca (2004)

  15. McCullough, J., Seceleanu, A.: Bounding projective dimension. In: Peeva, I. (ed.) Commutative Algebra. Expository papers dedicated to David Eisenbud on the occasion of his 65th birthday. Springer, New York (2013)

  16. Peeva, I., Stillman, M.: Open problems on syzygies and Hilbert functions. J. Commut. Algebra 1(1), 159–195 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Peskine, C., Szpiro, L.: Liaison des variétés algebriques. Invent. Math. 26, 271–302 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vatne, J.: Multiple structures and Hartshorne’s conjecture. Commun. Algebra 37(11), 3861–3873 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for finding several errors and helping to greatly improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason McCullough.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantero, P., McCullough, J. A finite classification of (xy)-primary ideals of low multiplicity. Collect. Math. 69, 107–130 (2018). https://doi.org/10.1007/s13348-017-0196-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-017-0196-4

Keywords

Mathematics Subject Classification

Navigation