Skip to main content
Log in

Steps Toward an Ethics of Environmental Robotics

  • Research Article
  • Published:
Philosophy & Technology Aims and scope Submit manuscript

Abstract

New robotics technologies are being used for environmental research, and engineers and ecologists are exploring ways of integrating an array of different sorts of robots into ecosystems as a means of responding to the unprecedented environmental changes that mark the onset of the Anthropocene. These efforts introduce new roles that robots may play in our environments, potentially crucial new forms of human dependence on such robots, and new ways that robots can enhance life quality and environmental health. These efforts at once introduce a variety of new and unprecedented ethical concerns. This work uses a previously developed functional taxonomy of kinds of environmental robots to develop a list of key ethical questions to push forward the sub-field and study of Environmental Robot Ethics. By identifying unique concerns raised by the different sorts of existing environmental robotics technologies, this paper aims to provide resources for further critical analysis of the ethical issues and tradeoffs environmental robots present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. As a clarificatory note, because the phrase “environmental service robots,” we use “environmental robots” as shorthand. In our names for the different classes of robots we distinguish, we also use the term “ecology” primarily as shorthand for “environmental research and engineering.” Notably, however, REMOVED-FOR-REVIEW-a explain several motivations for using the term ecological and for spotlighting uses of robots for ecological research and engineering (p. 1780). Also, REMOVED-FOR-REVIEW-b provides an extended discussion of various ecological values, and value for addressing ecological justice issues, had by the sorts of robots we focus on in the discussion that follows.

  2. This is precisely why these classifications matter—as the purpose or function changes, new ethical concerns arise. Researchers may not themselves recognize how this change requires a novel ethical evaluation as the purpose or function of the robot shifts. But depending on how the robots are used, it may make a big difference.

References

  • Aravind, K. R., Raja, P., & Pérez-Ruiz, M. (2017). Task-based agricultural mobile robots in arable farming: A review. Spanish Journal of Agricultural Research, 15(1), 02–01.

    Article  Google Scholar 

  • Asaro, P. (2006). What should we want from a robot ethic? International Review of Information Ethics, 6, 8–16.

    Article  Google Scholar 

  • Autonomous Flying Microrobots (RoboBees) (2017) Wyss Institute. Retrieved from https://wyss.harvard.edu/technology/autonomous-flying-microrobots-robobees/

  • Blersch, D. M. (2010). Towards an autonomous algal turf scrubber: Development of an ecologically-engineered technoecosystem.

  • Burger, A. E., & Shaffer, S. A. (2008). Application of tracking and data-logging technology in research and conservation of seabirds. Auk, 125, 253–264.

    Article  Google Scholar 

  • Burken, J., & Schnoor, J. (1998). Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environmental Science and Technology, 32(21), 3379–3385.

  • Cai, T. T., Montague, C. L., & Davis, J. S. (2006). The maximum power principle: An empirical investigation. Ecological Modelling, 190(3), 317–335.

    Article  Google Scholar 

  • Capurro, R. (2009). Ethics and robotics. In R. Capurro & M. Nagenborg (Eds.), Ethics and robotics (pp. 117–123). Amsterdam: IOS Press.

    Google Scholar 

  • Chechetka, S. A., Yu, Y., Tange, M., & Miyako, E. (2017). Materially engineered artificial pollinators. Chem, 2(2), 224–239.

    Article  Google Scholar 

  • Chen, Y., Wang, H., Helbling, E. F., Jafferis, N. T., Zufferey, R., Ong, A., et al. (2017). A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Science robotics, 2(11), eaao5619.

    Article  Google Scholar 

  • Choi-Fitzpatrick, A. (2014). Drones for good: Technological innovations, social movements, and the state. Journal of International Affairs, 19–36.

  • Clark, O. G., Kok, R., & Lacroix, R. (1999). Mind and autonomy in engineered biosystems. Engineering Applications of Artificial Intelligence, 12(3), 389–399.

    Article  Google Scholar 

  • Clark, C. M., Forney, C., Manii, E., Shinzaki, D., Gage, C., Farris, M., et al. (2013). Tracking and following a tagged leopard shark with an autonomous underwater vehicle. Journal of Field Robotics, 30(3), 309–322.

    Article  Google Scholar 

  • Dhariwal, A., Sukhatme, G. S., & Requicha, A. A. G. (2004). Bacterium-inspired robots for environmental monitoring. Paper presented at the Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 IEEE International Conference on.

  • Ditmer, M. A., Vincent, J. B., Werden, L. K., Tanner, J. C., Laske, T. G., Iaizzo, P. A., et al. (2015). Bears show a physiological but limited behavioral response to unmanned aerial vehicles. Current Biology, 25(17), 2278–2283.

    Article  Google Scholar 

  • Dunbabin, M., & Marques, L. (2012). Robots for environmental monitoring: Significant advancements and applications. IEEE Robotics and Automation Magazine, 19(1), 24–39.

    Article  Google Scholar 

  • Elliott, O., Gray, S., McClay, M., Nassief, B., Nunnelley, A., Vogt, E., et al. (2017). Design and manufacturing of high surface area 3D-printed media for moving bed bioreactors for wastewater treatment. Journal of Contemporary Water Research & Education, 160(1), 144–156.

    Article  Google Scholar 

  • Grémillet, D., Puech, W., Véronique, G., Thierry, B., Le, Y., Maho. (2012). Robots in ecology: Welcome to the machine. Open Journal of Ecology, 2012.

  • Griggs, M. B. (2017). Sorry, but these pollinating robots can’t replace bees. Popular Science. Retrieved from https://www.popsci.com/forgotten-gel-could-help-future-robot-pollination-bee-drone

  • Hart, J. K., & Martinez, K. (2006). Environmental sensor networks: A revolution in the earth system science? Earth-Science Reviews, 78(3), 177–191.

    Article  Google Scholar 

  • Hegde, M., Kim, J., Hong, S. H., Wood, T. K., & Jayaraman, A. (2011). Designer biofilms, Paper presented at the 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Seattle.

  • Hodgson, J. C., Baylis, S. M., Mott, R., Herrod, A., & Clarke, R. H. (2016). Precision wildlife monitoring using unmanned aerial vehicles. Scientific Reports, 6.

  • ISO 9787, Robots and robotic devices — Coordinate systems and motion nomenclatures. https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en. Accessed 17 Apr 2020.

  • Ivošević, B., Han, Y.-G., Cho, Y., & Kwon, O. (2015). The use of conservation drones in ecology and wildlife research. Ecology and Environment, 38, 113–118.

    Article  Google Scholar 

  • Kangas, P. (2004). Ecological engineering: Principles and practice: CRC Press.

  • Kardel, K., Carrano, A. L., Blersch, D. M., & Kaur, M. (2015). Preliminary development of 3D-printed custom substrata for benthic algal biofilms. 3D Printing and Additive Manufacturing, 2(1), 12–19.

    Article  Google Scholar 

  • Klein, B. A., Stein, J., & Taylor, R. C. (2012). Robots in the service of animal behavior. Communicative & Integrative Biology, 5(5), 466–472.

    Article  Google Scholar 

  • Koh, L. P., & Wich, S. A. (2012). Dawn of drone ecology: Low-cost autonomous aerial vehicles for conservation. Tropical Conservation Science, 5(2), 121–132.

  • Lam, T. L., & Xu, Y. (2012). Tree climbing robot: Design, kinematics and motion planning (Vol. 78): Springer.

  • Lampton, C. (1993). Nanotechnology playhouse: Building machines from atoms: Waite Group Press.

  • Leibovici, D. G., Rosser, J. F., Hodges, C., Evans, B., Jackson, M. J., & Higgins, C. I. (2017). On data quality assurance and conflation entanglement in crowdsourcing for environmental studies. ISPRS International Journal of Geo-Information, 6(3), 78.

    Article  Google Scholar 

  • Lin, P., Abney, K., & Bekey, G. A. (2011). Robot ethics: The ethical and social implications of robotics. Cambridge: MIT Press.

    Google Scholar 

  • The Lionfish Project: This Invasive Predator From The Pacific Is Rapidly Destroying Our Reefs.) (n.d.). Robots in the Service of the Environment. Retrieved 5/24/2017, from https://robotsise.com/lionfish-project/

  • Maho, L., Yvon, W., Jason, D., Hanuise, N., Pereira, L., Boureau, M., Brucker, M., et al. (2014). Rovers minimize human disturbance in research on wild animals. Nature Methods, 11(12), 1242–1244.

    Article  Google Scholar 

  • Menon, C., Murphy, M., & Sitti, M. (2004). Gecko inspired surface climbing robots. Paper presented at the 2004 IEEE International Conference on Robotics and Biomimetics.

  • Mineraud, J., Lancerin, F., Balasubramaniam, S., Conti, M., & Tarkoma, S. (2015). You are AIRing too much: Assessing the privacy of users in crowdsourcing environmental data. Paper presented at the Trustcom/BigDataSE/ISPA, 2015 IEEE.

  • Mission Vision (n.d.). Robots in the Service of the Environment. Retrieved 5/25/17, from https://robotsise.com/mission-vision/

  • Myers, J., & Clark, L. B. (1944). Culture conditions and the development of the photosynthetic mechanism: II. An apparatus for the continuous culture of Chlorella. The Journal of General Physiology, 28(2), 103.

    Article  Google Scholar 

  • Odum, HT. (1993). Ecological and general systems: An introduction to systems ecology: University Press of Colorado.

  • Olivito, J. (2013). Beyond the fourth amendment: Limiting drone surveillance through the constitutional right to informational privacy. Ohio State Law Journal, 74(4), 669–701.

    Google Scholar 

  • Parrott, L. (1996). The EcoCyborg Project: A model of an artificial ecosystem. McGill University.

  • Past Ecological Engineering Projects (n.d.). University of Maryland: Department of Environmental Science & Technology. Retrieved 5/25/2017, from https://enst.umd.edu/people/faculty/patrick-kangas/past-projects.

  • Peckham, S. H., Maldonado Diaz, D., Walli, A., Ruiz, G., Crowder, L. B., & Nichols, W. J. (2007). Small-scale fisheries bycatch jeopardizes endangered Pacific loggerhead turtles. PLoS One, 2(10), e1041. https://doi.org/10.1371/journal.pone.0001041.

    Article  Google Scholar 

  • Petersen, J. E. (2001). Adding artificial feedback to a simple aquatic ecosystem: The cybernetic nature of ecosystems revisited. Oikos, 533–547.

  • Programable Robot Swarms (n.d.) .Wyss Institute. Retrieved 5/25/2017, 2017, from https://wyss.harvard.edu/technology/programmable-robot-swarms/

  • Rundel, P. W., Graham, E. A., Allen, M. F., Fisher, J. C., & Harmon, T. C. (2009). Environmental sensor networks in ecological research. New Phytologist, 182(3), 589–607.

    Article  Google Scholar 

  • Rutz, C., & Hays, G. C. (2009). New frontiers in biologging science. The Royal Society, 289–292.

  • Siegwart, R., Nourbakhsh, I. R. & Scaramuzza, D. (2004). Autonomous mobile robots. In Massachusetts Institute of Technology. http://mars.umhb.edu/*wgt/cisc3361/redbook/5b_Summary_Add-on_Slides.pdf. Accessed 8 Oct 2017.

  • Succuro, J., McDonald, S., & Lu, C. (2009). Phytoremediation: The wave of the future. Recent Advances in Plant Biotechnology, 119–135.

  • Sullins, J. P. (2011). Introduction: Open questions in roboethics. Philosophy & Technology, 24(3), 233–238.

    Article  Google Scholar 

  • Today’s Eco-Robots (n.d.). Robots in the Service of the Environment. Retrieved 5/24/2017, 2017, from https://robotsise.com/todays-eco-robots/

  • Todd, J. (1991). Ecological engineering, living machines and the visionary landscape. Ecological Engineering for Wastewater Treatment, C. Etnier and B. Guterstam (eds.), BokSkogen, Stensurd Folk College, Trosh, Sweden, 335-343.

  • Todd, N. J., & Todd, J. (1994). From eco-cities to living machines: Principles of ecological design: North Atlantic Books.

  • Tripathi, R., Srivastava, S., Mishra, S., & Dwivedi, S. (2008). 7 strategies for phytoremediation of environmental contamination, In B. Bose & A. Hemantaranjan (Eds.), Developments in physiology, biochemistry and molecular biology of plants (pp. 175–220): New India Publishing.

  • Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., et al. (2009). Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environmental Science and Pollution Research, 16(7), 765–794.

    Article  Google Scholar 

  • Vas, E., Lescroël, A., Duriez, O., Boguszewski, G., & Grémillet, D. (2015). Approaching birds with drones: First experiments and ethical guidelines. Biology Letters, 11(2), 20140754.

  • Volovelsky, U. (2016). Civilian use of drones as a test case for the right to privacy: An Israeli perspective The Future of Drone Use (pp. 261-288): Springer.

  • Wadhams, P., Wilkinson, J. P., & McPhail, S. D.. (2006). A new view of the underside of Arctic sea ice. Geophysical Research Letters, 33(4).

  • West, G. (2015). Drone on: The sky’s the limit-if the FAA will get out of the way. Foreign Affairs, 94(3), 90–97.

    Google Scholar 

  • Whitcomb, L. L. (2000). Underwater robotics: Out of the research laboratory and into the field. In IEEE International Conference on Paper presented at the Robotics and Automation, Proceedings. ICRA’00.

  • Willcox, B. K., Aizen, M. A., Cunningham, S. A., Mayfield, M. M., & Rader, R. (2017). Deconstructing pollinator community effectiveness. Current Opinion in Insect Science, 21, 98–104.

    Article  Google Scholar 

  • Yaghoubi, S., Akbarzadeh, N. A., Bazargani, S. S., Bazargani, S. S., Bamizan, M., & Asl, M. I. (2013). Autonomous robots for agricultural tasks and farm assignment and future trends in agro robots. International Journal of Mechanical and Mechatronics Engineering, 13(3), 1–6.

    Google Scholar 

  • Yoerger, D. R., Kelley, D. S., & Delaney, J. R. (2000). Fine-scale three-dimensional mapping of a deep-sea hydrothermal vent site using the Jason ROV system. The International Journal of Robotics Research, 19(11), 1000–1014.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Justin Donhauser, Aimee van Wynsberghe or Alexander Bearden.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donhauser, J., van Wynsberghe, A. & Bearden, A. Steps Toward an Ethics of Environmental Robotics. Philos. Technol. 34, 507–524 (2021). https://doi.org/10.1007/s13347-020-00399-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13347-020-00399-3

Keywords

Navigation