Skip to main content
Log in

Taking Stock of Engineering Epistemology: Multidisciplinary Perspectives

  • Research Article
  • Published:
Philosophy & Technology Aims and scope Submit manuscript

Abstract

How engineers know, and act on that knowledge, has a profound impact on society. Consequently, the analysis of engineering knowledge is one of the central challenges for the philosophy of engineering. In this article, we present a thematic multidisciplinary conceptual survey of engineering epistemology and identify key areas of research that are still to be comprehensively investigated. Themes are organized based on a survey of engineering epistemology including research from history, sociology, philosophy, design theory, and engineering itself. Five major interrelated themes are identified: the relationship between scientific and engineering knowledge, engineering knowledge as a distinct field of study, the social epistemology of engineering, the relationship between engineering knowledge and its products, and the cognitive aspects of engineering knowledge. We discuss areas of potential future research that are underdeveloped or “undone.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For a historical overview of the philosophy of engineering and technology, see Brey (2010)

  2. See Christensen et al. (2015b) for a similar perspective.

  3. The interaction has been widely discussed and still remains in a state of flux (Niiniluoto 2016; Radder 2009; Pedersen 2015; Hansson 2015, 2016; Forman 2007). The science engineering (and technology) is a historical relationship and its present state can be found by considering its growth trajectory. For example, in American engineering, see the following for a historical treatment of engineers and their ways in comprehending and contesting the science-engineering divide: Belanger (1998), Kline and Lassman (2015), Kline (1987, 2000), Akera and Seely (2015), and Seely (1993, 2013).

  4. Given the social nature of engineering knowledge, discussed later, we may want to add to this another kind of knowledge: group knowledge. It is beyond the scope of this article to address the notion of group knowledge in any detail. An overview can be found in Schmid et al. (2011).

  5. It is not the purpose of this paper to detail this discussion in full. For more on knowledge how/that and its relation to technological knowledge how, see Hetherington (2015), Houkes (2006), and Norström (2011, 2015). For more on a traditional discussion of technological knowledge, see Cupani (2006), de Vries (2003, 2006), and Meijers and de Vries (2012).

  6. The challenge of interpretation is one of the biggest problems in archeology.

  7. For more extensive discussion on the metaphysics of artifact kinds see, e.g., Franssen et al. (2013), Margolis and Laurence (2007), and Vaccari (2013).

  8. It is very difficult to present a clear-cut difference between the natural and the artificial. With the growth of new biological devices and advances in biological engineering, the natural and artificial is even further blurred. However, in some cases, for ease of discussion, it is possible to make demarcations. The examples presented here are used to show the difference between natural and engineered systems.

  9. Related to this is the question of whether there is such a thing as technological explanation (Pitt 2000, Ch. 4, 2009).

References

  • Akera, A., & Seely, B. (2015). A historical survey of the structural changes in the American system of engineering education. In S. Christensen, C. Didier, A. Jamison, M. Meganck, C. Mitcham, & B. Newberry (Eds.), International perspectives on engineering education, Philosophy of engineering and technology (Vol. 20, pp. 7–32). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  • Akin, Ö. (2001). Variants in design cognition. In Design knowing and learning: cognition in design education (pp. 105–124). Oxford: Elsevier Science.

    Chapter  Google Scholar 

  • Akin, Ö. (2009). Variants and invariants of design cognition. In J. McDonnell & P. Lloyd (Eds.), About designing, analysing design meetings. London: Taylor & Francis Group..

    Google Scholar 

  • Arden, B. W. (1980). What can be automated? Cambridge: MIT Press.

    Google Scholar 

  • Baker, L. R. (2009). The metaphysics of malfunction. Techné, 13(2), 82–92.

    Google Scholar 

  • Barnes, B. (1982). The science-technology relationship: a model and a query. Social Studies of Science, 12(1), 166–172.

    Article  Google Scholar 

  • Bassett, R. (2016). The technological Indian. Cambridge: Harvard University Press.

    Book  Google Scholar 

  • Baumann, P. (2011). WAMs: why worry? Philosophical Papers, 40(2), 155–177.

    Article  Google Scholar 

  • Belanger, D. O. (1998). Enabling American innovation: Engineering and the National Science Foundation. West Lafayette: Purdue University Press.

    Google Scholar 

  • Blaauw, M. (2003). WAMming away at contextualism. Nordic Journal of Philosophy, 4, 88–97.

    Google Scholar 

  • Bloom, P. (1996). Intention, history and artifact concepts. Cognition, 60, 1–29.

    Article  Google Scholar 

  • Bloor, D., Barnes, B., & Henry, J. (1996). Scientific knowledge: a sociological analysis. Chicago: University of Chicago Press.

    Google Scholar 

  • Boon, Mieke. (2006). How science is applied in technology. International studies in the philosophy of science, 20(1), 27–48.

  • Boon, M. (2008). Diagrammatic models in the engineering sciences. Foundations of Science, 13, 127–142.

    Article  Google Scholar 

  • Boon, M. (2011). In defense of engineering sciences: on the epistemological relations between science and technology. Techné, 15(1), 49–71.

    Google Scholar 

  • Boon, M., & Knuuttila, T. (2009). Models as epistemic tools in engineering sciences. In A. Meijers (Ed.), Handbook of the philosophy of science (pp. 693–726). Amsterdam: North-Holland.

    Google Scholar 

  • Brey, P. (2010). Philosophy of technology after the empirical turn. Techné, 14(1), 36–48.

    Google Scholar 

  • Brown, J. K. (2000). Design plans, working drawings, national styles: engineering practice in Great Britain and the United States, 1775-1945. Technology and Culture, 41(2), 195–238.

    Article  Google Scholar 

  • Brown, J. (2006). Contextualism and warranted assertibility manoeuvres. Philosophical Studies, 130, 407–435.

    Article  Google Scholar 

  • Brown, T., & Wyatt, J. (2010). Design thinking for social innovation. Development Outreach, 12(1), 29–43.

    Article  Google Scholar 

  • Brown, J. K., Downey, G. L., & Diogo, M. P. (2009). The normativities of engineers: engineering education and history of technology. Technology and Culture, 50(4), 737–752.

    Article  Google Scholar 

  • Bruce, R. V. (1987). The launching of modern American science, 1846–1876. New York: Knopf.

    Google Scholar 

  • Bucciarelli, L. L. (1988). An ethnographic perspective on engineering design. Design Studies, 9(3), 159–168.

    Article  Google Scholar 

  • Bucciarelli, L. L. (1994). Designing engineers. Cambridge: MIT Press.

    Google Scholar 

  • Bucciarelli, L. L. (2002). Between thought and object in engineering design. Design Studies, 23(3), 219–231.

    Article  Google Scholar 

  • Bucciarelli, L. L. (2003). Engineering philosophy. Delft: Dup Satellite Delft.

    Google Scholar 

  • Buch, A. (2015). Studying engineering practice. In S. Christensen, C. Didier, A. Jamison, M. Meganck, C. Mitcham, & B. Newberry (Eds.), Engineering identities, epistemologies and values, Philosophy of engineering and technology, vol (Vol. 21, pp. 129–145). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  • Buchanan, R. A. (1989). The engineers: a history of the engineering profession in Britain, 1750–1914. London: Kingsley, Jessica.

    Google Scholar 

  • Bunge, M. (1966). Technology as applied science. Technology and Culture, 7, 329–349.

    Article  Google Scholar 

  • Burnham, J. C. (1987). How superstition won and science lost: Popularizing science and health in the United States. New Brunswick: Rutgers University Press.

    Google Scholar 

  • Burnham, J. C. (1988). Paths into American culture: psychology, medicine, and morals. Philadelphia: Temple University Press.

    Google Scholar 

  • Cassis, Y., Crouzet, F., & Gourvish, T. R. (Eds.). (2005). Management and business in Britain and France: the age of the corporate economy. Oxford: Clarendon Press.

    Google Scholar 

  • Channell, D. F. (2009). The emergence of the engineering sciences: an historical analysis. In A. Meijers (Ed.), Philosophy of technology and engineering sciences (pp. 117–154). Amsterdam: North-Holland/Elsevier.

    Chapter  Google Scholar 

  • Christensen, S. H., Didier, C., Jamison, A., Meganck, M., Mitcham, C., & Newberry, B. (Eds.). (2015a). Engineering identities, epistemologies and values engineering education and practice in context, volume 2. Cham: Springer.

    Google Scholar 

  • Christensen, S. H., Didier, C., Jamison, A., Meganck, M., Mitcham, C., & Newberry, B. (Eds.). (2015b). Engineering identities, epistemologies and values. Cham: Springer.

    Google Scholar 

  • Cohen, S. (1987). Knowledge, context, and social standards. Synthese, 73(1), 3–26.

    Article  Google Scholar 

  • Cohen, S. (1998). Contextualist solutions to epistemological problems: Scepticism, Gettier, and the lottery. Australasian Journal of Philosophy, 76, 289–306.

    Article  Google Scholar 

  • Constant, E. W. (1980). The origins of the turbojet revolution. Baltimore: The Johns Hopkins University Press.

    Google Scholar 

  • Constant, E. W. (1983). Scientific theory and technological testability: science, dynamometers, and water turbines in the 19th century. Technology and Culture, 24(2), 183–198.

    Article  Google Scholar 

  • Constant, E. W. (1989). Science in society: petroleum engineers and the oil fraternity in Texas, 1925-65. Social Studies of Science, 19(3), 439–472.

    Article  Google Scholar 

  • Craig, D. L. (2001). Stalking Homo Faber: a comparison of research strategies for studying design behavior. In Design knowing and learning: cognition in design education (pp. 13–36). Oxford: Elsevier Science.

    Chapter  Google Scholar 

  • Cross, N. (2001). Design cognition: results from protocol and other empirical studies of design activity. In Design knowing and learning: cognition in design education (pp. 79–103). Oxford: Elsevier Science.

    Chapter  Google Scholar 

  • Cross, N. (2006). Designerly ways of knowing. London: Springer.

    Google Scholar 

  • Cupani, A. (2006). The peculiarity of technological knowledge. Scientiae Studia, 4(3), 353–371.

    Article  Google Scholar 

  • de Vries, M. J. (2003). The nature of technological knowledge. Techné, 6(3), 117–130.

    Google Scholar 

  • de Vries, M. J. (2006). Technological knowledge and artefacts: an analytical view. In J. R. Dakers (Ed.), Defining technological literacy: towards an epistemological framework. Basingstoke: Palgrave-Macmillan.

    Google Scholar 

  • de Vries, M. J. (2009). Translating customer requirements into technical specifications. In Philosophy of technology and engineering sciences (pp. 489–512). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • de Vries, M. J., & Meijers, A. W. M. (2013). Beliefs, acceptances and technological knowledge. In Norms in technology (pp. 55–65). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Del Frate, L. (2012). Failure of engineering artefacts: a life cycle approach. Science and Engineering Ethics, 19(3), 913–944.

    Article  Google Scholar 

  • Del Frate, L. (2014). Failure: analysis of an engineering concept. Delft. Available at: http://p-e.ieis.tue.nl/node/133.

  • Del Frate, L., Zwart, S. D., & Kroes, P. A. (2011). Root cause as a U-turn. Engineering Failure Analysis, 18(2), 747–758.

    Article  Google Scholar 

  • Dennett, D. C. (1995). Darwin’s dangerous idea: evolution and the meanings of life. City of New York: Simon and Schuster.

    Google Scholar 

  • DeRose, K. (1992). Contextualism and knowledge attributions. Philosophy and Phenomenological Research, 52(4), 913–929.

    Article  Google Scholar 

  • Donovan, A. (1986). Thinking about engineering. Technology and Culture, 27(4), 674–679.

    Article  Google Scholar 

  • Dorst, K. (2004). On the problem of design problems—problem solving and design expertise. Journal of Design Research, 4(2).

  • Dorst, K., & Vermaas, P. E. (2005). John Gero’s function-behaviour-structure model of designing: a critical analysis. Research in Engineering Design, 16(1–2), 17–26.

    Article  Google Scholar 

  • Downey, G. (2005). Are engineers losing control of technology?: from problem solving to problem definition and solution in engineering education. Chemical Engineering Research and Design, 83(6), 583–595.

  • Downey, G. L. (2007). Low cost, mass use: American engineers and the metrics of progress. History and Technology, 23(3), 289–308.

    Article  Google Scholar 

  • Downey, G. L., & Lucena, J. C. (2004). Knowledge and professional identity in engineering: code-switching and the metrics of progress. History and Technology, 20(4), 393–420.

    Article  Google Scholar 

  • Downey, G. L., Donovan, A., & Elliott, T. J. (1989). The invisible engineer: how engineering ceased to be a problem in science and technology studies. Knowledge and Society: Studies in the Sociology of Culture Past and Present, 8, 189–216.

    Google Scholar 

  • Dretske, F. (1970). Epistemic operators. Journal of Philosophy, 67, 1007–1023.

    Article  Google Scholar 

  • Dubberly, H. (2004). How do you design?: a compendium of models. San Francisco.

  • Dunbar, K. (1995). How scientists really reason: Scientific reasoning in real-world laboratories. In R. J. Sternberg & J. Davidson (Eds.), Mechanisms of insight (pp. 365–395). Cambridge: MIT Press.

    Google Scholar 

  • Dusek, V. (2008). Philosophy of technology: an introduction. Malden: Wiley-Blackwell.

    Google Scholar 

  • Farrell, R., & Hooker, C. (2012). The Simon–Kroes model of technical artefacts and the distinction between science and design. Design Studies, 33(5), 480–495.

    Article  Google Scholar 

  • Farrell, R., & Hooker, C. (2015). Designing and sciencing: response to Galle and Kroes. Design Studies, 37, 1–11.

    Article  Google Scholar 

  • Feenberg, A. (2016). The concept of function in critical theory of technology. In M. Franssen, P. Vermaas, P. Kroes, & A. Meijers (Eds.), Philosophy of technology after the empirical turn, Philosophy of engineering and technology (Vol. 23, pp. 283–303). Cham: Springer.

    Google Scholar 

  • Ferguson, E. S. (1977). The mind’s eye: nonverbal thought in technology. Science, 197(4306), 827–836.

    Article  Google Scholar 

  • Ferguson, E. S. (1992). Engineering and the mind’s eye. Cambridge: The MIT Press.

    Google Scholar 

  • Floridi, L. (2011). A defense of constructionism: philosophy as conceptual engineering. Metaphilosophy, 42(3), 282–304.

    Article  Google Scholar 

  • Forman, P. (2007). The primacy of science in modernity, of technology in postmodernity, and of ideology in the history of technology. History and Technology, 23(1–2), 1–152.

    Article  Google Scholar 

  • Franssen, M. (2015). Design for values and operator roles in sociotechnical system. In J. van der Hoven, P. Vermaas, & I. van de Poel (Eds.), Handbook of ethics, values, and technological design (pp. 117–149). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Franssen, M., & Kroes, P. (2009). Sociotechnical systems. In J. K. B. Olsen, S. A. Pedersen, & V. F. Hendricks (Eds.), A companion to the philosophy of technology (pp. 223–226). Wiley-Blackwell: Oxford.

    Chapter  Google Scholar 

  • Franssen, M., Kroes, P., Vermaas, P. E., & Reydon, T. A. C. (Eds.). (2013). Artefact kinds: ontology and the human-made world. Dordrecht: Springer.

    Google Scholar 

  • Franssen, M., Vermaas, P. E., Kroes, P., & Meijers, A. W. M. (2016). Editorial introduction: putting the empirical turn into perspective. In M. Franssen, P. Vermaas, P. Kroes, & A. Meijers (Eds.), Philosophy of technology after the empirical turn, Philosophy of engineering and technology (Vol. 23, pp. 1–10). Cham: Springer.

    Google Scholar 

  • Fuller, S. (1987). On regulating what is known: a way to social epistemology. Synthese, 73(1), 145–183.

    Article  Google Scholar 

  • Galle, P., & Kroes, P. (2014). Science and design: identical twins? Design Studies, 35(3), 201–231.

    Article  Google Scholar 

  • Galle, P., & Kroes, P. (2015). Science and design revisited. Design Studies, 37, 67–72.

    Article  Google Scholar 

  • Gero, J. S., & Kannengiesser, U. (2004). The situated function–behaviour–structure framework. Design Studies, 25(4), 373–391.

    Article  Google Scholar 

  • Gero, J. S., Jiang, H., & Williams, C. B. (2013). Design cognition differences when using unstructured, partially structured, and structured concept generation creativity techniques. International Journal of Design Creativity and Innovation, 1(4), 196–214.

    Article  Google Scholar 

  • Gero, J. S., Kannengiesser, U., & Pourmohamadi, M. (2014). Commonalities across designing: empirical results. In J. S. Gero (Ed.), Design computing and cognition 12 (pp. 265–281). Dordrecht: Springer.

    Google Scholar 

  • Goldman, A. (1999). Knowledge in a social world. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Grayson, L. P. (1993). The making of an engineer: an illustrated history of engineering education in the United States and Canada. New York: Wiley.

    Google Scholar 

  • Grimson, W., & Murphy, M. (2015). The epistemological basis of engineering, and its reflection in the modern engineering curriculum. In S. Christensen, C. Didier, A. Jamison, M. Meganck, C. Mitcham, & B. Newberry (Eds.), Engineering identities, epistemologies and values, Philosophy of engineering and technology (Vol. 21, pp. 161–178). Cham: Springer.

    Chapter  Google Scholar 

  • Guillén, M. F. (1994). Models of management: work, authority, and organization in a comparative perspective. Chicago: University of Chicago Press.

    Google Scholar 

  • Hagge, J. (1995). Early engineering writing textbooks and the anthropological complexity of disciplinary discourse. Written Communication, 12(4), 439–491.

    Article  Google Scholar 

  • Hansson, S. O. (2013). What is technological knowledge? In I. Skogh & M. J. de Vries (Eds.), Technology teachers as researchers (pp. 17–31). Rotterdam: Sense Publishers.

    Chapter  Google Scholar 

  • Hansson, S. O. (2015). Science and technology: what they are and why their relation matters. In S. Hansson (Ed.), The role of technology in science: philosophical perspectives, Philosophy of engineering and technology (Vol. 18, pp. 11–23). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Hansson, S. O. (2016). Technology as a practical art. In M. Franssen, P. Vermaas, P. Kroes, & A. Meijers (Eds.), Philosophy of technology after the empirical turn, Philosophy of engineering and technology (Vol. 23, pp. 63–81). Dordrecht: Springer.

    Google Scholar 

  • Hardwig, J. (1985). Epistemic dependence. Journal of Philosophy, 82(7), 335–349.

    Article  Google Scholar 

  • Hardwig, J. (1991). The role of trust in knowledge. Journal of Philosophy, 88(12), 693–720.

    Article  Google Scholar 

  • Haynes, R. D. (1994). From Faust to Strangelove. Representations of the scientist in Western literature. Baltimore: The Johns Hopkins University Press.

    Google Scholar 

  • Henderson, K. (1999). On line and on paper: visual representations, visual culture, and computer graphics in design engineering. Cambridge: The MIT Press.

    Google Scholar 

  • Hess, D. (2016). Undone science: social movements, mobilized publics, and industrial transitions. Cambridge: MIT Press.

    Book  Google Scholar 

  • Hetherington, S. (2015). Technological knowledge-that as knowledge-how: a comment. Philosophy and Technology, 28(4), 567–572.

    Article  Google Scholar 

  • Hilpinen, R. (1993). Authors and artefacts. Proceedings of the Aristotelian Society, 93, 155–178.

    Article  Google Scholar 

  • Hindle, B. (1981). Invention and emulation. New York: WW Norton.

    Google Scholar 

  • Hindle, B. (1982). Necessity is not the mother of invention. American Heritage, 34(1), 8–9.

    Google Scholar 

  • Hindle, B. (1986). From art to technology and science. In: Proceedings of the American Antiquarian Society. 96 (1). Worcester: American Antiquarian Society, pp. 25–37.

  • Houkes, W. (2006). Knowledge of artefact functions. Studies in History and Philosophy of Science Part A, 37(1), 102–113.

    Article  Google Scholar 

  • Houkes, W. (2009). The nature of technological knowledge. In A. Meijers (Ed.), Philosophy of technology and engineering sciences (pp. 309–350). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Houkes, W. (2013). Rules, plans and the normativity of technological knowledge. In M. de Vries, S. Hansson, & A. Meijers (Eds.), Norms in technology. Philosophy of engineering and technology (Vol. 9, pp. 35–54). Springer.

  • Houkes, W., & Meijers, A. W. M. (2006). The ontology of artefacts: the hard problem. Studies in History and Philosophy of Science Part A, 37(1), 118–131.

    Article  Google Scholar 

  • Houkes, W. and Vermaas, P.E. 2010. Technical functions: on the use and design of artefacts; New York: Springer.

    Book  Google Scholar 

  • Hounshell, D. A. (1980). Edison and the pure science ideal in 19th-century America. Science, 207(4431), 612–617.

    Article  Google Scholar 

  • Hunter, L. C. (1985). A history of industrial power in the United States, 1780–1930. Volume 2: steampower. Charlottesville: University Press of Virginia.

    Google Scholar 

  • Jiang, H., Gero, J. S., & Yen, C.-C. (2014). Exploring designing styles using a problem–solution index. In J. S. Gero (Ed.), Proc. Design Computing and Cognition DCC’12 (pp. 85–101).

    Google Scholar 

  • Johansson-Sköldberg, U., Woodilla, J., & Çetinkaya, M. (2013). Design thinking: past, present and possible futures. Creativity and Innovation Management, 22(2), 121–146.

    Article  Google Scholar 

  • Johnson, A. (2009). Hitting the brakes. Durham: Duke University Press.

    Book  Google Scholar 

  • Kan, J. W. T. and Gero, J. S. (2011). Comparing designing across different domains: an exploratory case study. In: DS 68-2: Proceedings of the 18th International Conference on Engineering Design (ICED 11). Impacting society through engineering design, vol. 2: design theory and research methodology. Lyngby/Copenhagen, Denmark, 15–19 August 2011.

  • Kerr, E. (2017). Evidence in engineering. In D. Michelfelder, B. Newberry, & Q. Zhu (Eds.), Philosophy and engineering, Philosophy of engineering and technology, vol (Vol. 26, pp. 43–59). Cham: Springer.

    Google Scholar 

  • Kerr, E., & Gelfert, A. (2014). The “extendedness” of scientific evidence. Philosophical Issues (Nous supplementary volume), 24(1), 253–281.

    Article  Google Scholar 

  • Kimbell, L. (2011). Rethinking design thinking: part I. Design and Culture, 3(3), 285–306.

    Article  Google Scholar 

  • Kline, R. (1987). Science and engineering theory in the invention and development of the induction motor, 1880-1900. Technology and Culture, 28(2), 283.

    Article  Google Scholar 

  • Kline, R. (1995). Construing “technology” as “applied science”: Public rhetoric of scientists and engineers in the United States, 1880-1945. Isis, 86(2), 194–221.

    Article  Google Scholar 

  • Kline, R. R. (2000). The paradox of “engineering science”: a cold war debate about education in the U.S. IEEE Technology and Society Magazine, 19(3), 19–25.

    Article  Google Scholar 

  • Kline, R. R., & Lassman, T. C. (2015). Competing research traditions in American industry: uncertain alliances between engineering and science at Westinghouse electric, 1886–1935. Enterprise and Society, 6(04), 601–645.

    Google Scholar 

  • Koen, B. V. (1985). Definition of the engineering method, ASEE Publications. Available at: http://files.eric.ed.gov/fulltext/ED276572.pdf.

  • Koen, B. V. (1988). Toward a definition of the engineering method. European Journal of Engineering Education, 13(3), 307–315.

    Article  Google Scholar 

  • Koen, B. V. (2003). Discussion of the method: rightly conducting the engineer’s approach to problem solution. New York: Oxford University Press.

    Google Scholar 

  • Kokotovich, V., & Purcell, T. (2000). Mental synthesis and creativity in design: an experimental examination. Design Studies, 21(5), 437–449.

    Article  Google Scholar 

  • Kostyszak, M., Wadowski, J., & Zaród, M. (2015). Engineering education in Slavic languages countries. In S. Christensen, C. Didier, A. Jamison, M. Meganck, C. Mitcham, & B. Newberry (Eds.), International perspectives on engineering education, Philosophy of engineering and technology (Vol. 20, pp. 125–143). Cham: Springer.

    Chapter  Google Scholar 

  • Kranakis, E. (1997). Constructing a bridge: an exploration of engineering culture, design, and research in nineteenth century France and America. Cambridge: The MIT Press.

    Google Scholar 

  • Kroes, P. (2002). Design methodology and the nature of technical artefacts. Design Studies, 23(3), 287–302.

    Article  Google Scholar 

  • Kroes, P. (2009). Foundational issues of engineering design. In Philosophy of technology and engineering sciences (pp. 513–541). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Kroes, P. (2010). Engineering and the dual nature of technical artefacts. Cambridge Journal of Economics, 34(1), 51–62.

    Article  Google Scholar 

  • Kroes, P. (2012). Technical artefacts: creations of mind and matter. New York: Springer.

    Book  Google Scholar 

  • Kroes, P., & Meijers, A. (2006). The dual nature of technical artefacts. Studies in History and Philosophy of Science Part A, 37(1), 1–4.

    Article  Google Scholar 

  • Krohs, U., & Kroes, P. (2009). Philosophical perspectives on organismic and artefactual functions. In U. Krohs & P. Kroes (Eds.), Functions in biological and artificial worlds: comparative philosophical perspectives (pp. 3–12). Cambridge: The MIT Press.

    Chapter  Google Scholar 

  • Kusch, M. (2002). Knowledge by agreement: the programme of communitarian epistemology. Oxford: Clarendon Press.

    Book  Google Scholar 

  • Lafollette, M. C. (1990). Making science our own: public images of science, 1910–1955. Chicago: University of Chicago Press.

    Google Scholar 

  • Laureillard, P., & Vinck, D. (2003). The role of graphical representations in inter-professional cooperation. In V. Dominique (Ed.), Everyday engineering. ethnography of design and innovation (pp. 159–175). Cambridge: MIT Press.

    Google Scholar 

  • Lavelle, S. (2015). Engineering as a technological way of world-making. In S. Christensen, C. Didier, A. Jamison, M. Meganck, C. Mitcham, & B. Newberry (Eds.), Engineering identities, epistemologies and values, Philosophy of engineering and technology (Vol. 21, pp. 251–269). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  • Law, J. (1990). Descriptions of the design process. In How designers think (pp. 22–36). Amsterdam: Elsevier.

    Google Scholar 

  • Law, J., & Dorst, K. (2009). Design expertise. Burlington: Architectural Press.

    Google Scholar 

  • Lawson, B. R. (1979). Cognitive strategies in architectural design. Ergonomics, 22(1), 59–68.

    Article  Google Scholar 

  • Lawson, B. R. (2005). How designers think: the design process demystified (4th ed.). Burlington: Architectural Press.

    Google Scholar 

  • Layton, E. (1971). Mirror-image twins: the communities of science and technology in 19th-century America. Technology and Culture, 12(4), 562–580.

    Article  Google Scholar 

  • Layton, E. T. (1974). Technology as knowledge. Technology and Culture, 15(1), 31–41.

    Article  Google Scholar 

  • Layton, E. T. (1976a). American ideologies of science and engineering. Technology and Culture, 17(4), 688–701.

    Article  Google Scholar 

  • Layton, E. T. (1976b). Technology and science [“Vive La Petite Difference”]. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 2, 173–184.

    Google Scholar 

  • Layton, E. T. (1977). Conditions of technological development. In I. Spiegel-Rosing & D. J. de Solla Price (Eds.), Science, technology, and society. Beverly Hills: Sage.

    Google Scholar 

  • Layton, E. T. (1986). The revolt of the engineers: social responsibility and the American engineering profession. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Layton, E. T. (1988). Science as a form of action: the role of the engineering sciences. Technology and Culture, 29(1), 82–97.

    Article  Google Scholar 

  • Layton, E. T. (1991). A historical definition of engineering. In P. T. Durbin (Ed.), Critical perspectives on nonacademic science and engineering (pp. 60–79). Cranbury: Lehigh University Press.

    Google Scholar 

  • Leite, A. (2005). Some worries for would-be Wammers. Grazer Philosophische Studien, 69, 101–125.

    Article  Google Scholar 

  • Lucena, J. C. (2005). Defending the nation: US policymaking to create scientists and engineers from sputnik to the “war against terrorism”. Lanham: University Press of America.

    Google Scholar 

  • Lucier, P. (2012). The origins of pure and applied science in gilded age America. Isis, 103(3), 527–536.

    Article  Google Scholar 

  • Lundgreen, P. (1990). Engineering Education in Europe and the U.S.A., 1750–1930: the rise to dominance of school culture and the engineering professions. Annals of Science, 47(1), 33–75.

    Article  Google Scholar 

  • Margolis, E., & Laurence, S. (2007). Creations of the mind: Theories of artefacts and their representation. Oxford: Oxford University Press.

    Google Scholar 

  • Matthews, B. (2007). Locating design phenomena: a methodological excursion. Design Studies, 28(4), 369–385.

    Article  Google Scholar 

  • Meijers, A. W. M., & de Vries, M. J. (2012). Technological knowledge. In J. K. B. O. Friis, S. A. Pedersen, & V. F. Hendricks (Eds.), A companion to the philosophy of technology. Hoboken: Wiley-Blackwell.

    Google Scholar 

  • Meijers, A. W. M., & Kroes, P. A. (2013). Extending the scope of the theory of knowledge. In M. J. de Vries, S. O. Hansson, & A. W. M. Meijers (Eds.), Norms in technology, Philosophy of engineering and technology, vol (Vol. 9, pp. 15–34). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Meiksins, P. (1996). Engineers in the United States: a house divided. In P. Meiksins & C. Smith (Eds.), Engineering labour: Technical Workers in Comparative Perspective (pp. 61–97). New York: Verso.

    Google Scholar 

  • Meiksins, P., & Smith, C. (1996). Engineering labour: technical workers in comparative perspective. Londres New York: Verso.

    Google Scholar 

  • Merritt, R. H. (1969). Engineering in American society, 1850–1875. Lexington: University Press of Kentucky.

    Google Scholar 

  • Merton, R. K. (1965). On the shoulders of giants. New York: Harcourt, Brace & World.

    Google Scholar 

  • Michelfelder, D. P., et al. (2013). Foreword: prospects in the philosophy of engineering: an exchange between the editors and Carl Mitcham. In D. P. Michelfelder, N. McCarthy, & D. E. Goldberg (Eds.), Philosophy and engineering: reflections on practice, principles and process. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Mitcham, C. (1994). Thinking through technology: the path between engineering and philosophy. Chicago: University of Chicago Press.

    Google Scholar 

  • Mitcham, C., & Schatzberg, E. (2009). Defining technology and the engineering sciences. In A. Meijers (Ed.), Philosophy of technology and engineering sciences (pp. 27–63). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Murphy, M., Chance, S., & Conlon, E. (2015). Designing the identities of engineers. In S. Christensen, C. Didier, A. Jamison, M. Meganck, C. Mitcham, & B. Newberry (Eds.), Engineering identities, epistemologies and values, Philosophy of engineering and technology (Vol. 21, pp. 41–64). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  • Nagel, J. (2008). Knowledge ascriptions and the psychological consequences of changing stakes. Australasian Journal of Philosophy, 86(2), 279–294.

    Article  Google Scholar 

  • Nersessian, N. J., & Patton, C. (2009). Model-based reasoning in interdisciplinary engineering. In A. Meijers (Ed.), Handbook of the philosophy of science (pp. 727–757). Amsterdam: North-Holland.

    Google Scholar 

  • Newberry, B. (2015). The dialectics of engineering. In S. Christensen, C. Didier, A. Jamison, M. Meganck, C. Mitcham, & B. Newberry (Eds.), Engineering identities, epistemologies and values, Philosophy of engineering and technology (Vol. 21, pp. 9–22). Cham: Springer.

    Chapter  Google Scholar 

  • Niiniluoto, I. (2016). Philosophy of technology after the empirical turn. In M. Franssen, P. Vermaas, P. Kroes, & A. Meijers (Eds.), Philosophy of engineering and technology (Vol. 23, pp. 93–106). Cham: Springer.

    Google Scholar 

  • Noble, D. F. (1977). America by design: science, technology, and the rise of corporate capitalism. New York: Knopf.

    Google Scholar 

  • Nordmann, A. (2006). Collapse of distance: epistemic strategies of science and technoscience. Danish Yearbook of Philosophy, 41, 7–34.

    Article  Google Scholar 

  • Nordmann, A., Radder, H., & Shiemann, G. (2011). Science transformed?: debating claims of an epochal break. Pittsburgh: University of Pittsburgh Press.

    Book  Google Scholar 

  • Norström, P. (2011). Technological know-how from rules of thumb. Techne, 15(2), 96–109.

    Google Scholar 

  • Norström, P. (2015). Knowing how, knowing that, knowing technology. Philosophy and Technology, 28(4), 553–565.

    Article  Google Scholar 

  • Oreskes, N., & Conway, E. M. (2010). Merchants of doubt. London: Bloomsbury Press.

    Google Scholar 

  • Peck, D. (2008). Practical action: Polanyi, hacking, Heidegger and the tacit dimension. Saarbrucken: VDM Verlag Dr. Muller.

    Google Scholar 

  • Pedersen, S. A. (2015). The tension between science and engineering design. In S. H. Christensen et al. (Eds.), Engineering identities, epistemologies and values (pp. 179–198). Cham: Springer.

    Chapter  Google Scholar 

  • Petroski, H. (1992). To engineer is human: the role of failure in successful design. New York: Vintage.

    Google Scholar 

  • Petroski, H. (1996). Invention by design: how engineers get from thought to thing. Cambridge: Harvard University Press.

    Google Scholar 

  • Pinch, T. J., & Bijker, W. E. (1984). The social construction of facts and artefacts: or how the sociology of science and the sociology of technology might benefit each other. Social Studies of Science, 14(3), 399–441.

    Article  Google Scholar 

  • Pinch, T. J., & Oudshoorn, N. (Eds.). (2005). How users matter: The co-construction of users and technologies. Cambridge: MIT Press.

    Google Scholar 

  • Pitt, J. C. (2000). Thinking about technology. New York: Seven Bridges Press.

  • Pitt, J. C. (2001). What engineers know. Techné: Research in Philosophy and Technology, 5(3), 116–123.

  • Pitt, J. C. (2007). What engineers know. Techné, 5(3), 116–123.

    Google Scholar 

  • Pitt, J. C. (2009). Technological explanation. In A. Meijers (Ed.), Philosophy of technology and engineering sciences (pp. 861–879). Amsterdam: Elsevier/North-Holland.

    Chapter  Google Scholar 

  • Polanyi, M. (2005). Personal knowledge. Chicago: University of Chicago Press. Original work published in 1958.

  • Polanyi, M. (2009). The tacit dimension. Chicago: University of Chicago Press. Original work published in 1966.

  • Powell, R. (2015). Adopting a technological stance toward the living world. Promises, pitfalls and perils. In S. Hansson (Ed.), The role of technology in science: philosophical perspectives, Philosophy of engineering and technology (Vol. 18, pp. 149–172).

    Chapter  Google Scholar 

  • Preston, B. (2009). Philosophical theories of artefact function. In A. Meijers (Ed.), Philosophy of technology and engineering sciences (pp. 213–233). Amsterdam: Elsevier/North-Holland.

    Chapter  Google Scholar 

  • Pritchard, D. (2005). Contextualism, scepticism, and warranted assertability manoeuvres. In J. K. Campbell, M. O’Rourke, & H. S. Silverstein (Eds.), Knowledge and skepticism. Cambridge: MIT Press.

    Google Scholar 

  • Pritchard, M. S. (2009). Professional standards in engineering practice. In A. Meijers (Ed.), Philosophy of technology and engineering sciences (pp. 953–971). Amsterdam: Elsevier/North-Holland.

    Chapter  Google Scholar 

  • Proctor, R. N., & Schiebinger, L. (Eds.). (2008). Agnotology: the making and unmaking of ignorance. Palo Alto: Stanford University Press.

    Google Scholar 

  • Purcell, A. T., & Gero, J. S. (1996). Design and other types of fixation. Design Studies, 17(4), 363–383.

    Article  Google Scholar 

  • Radder, H. (2009). Science, technology and the science-technology relationship. In A. Meijers (Ed.), Philosophy of technology and engineering sciences (pp. 65–91). Amsterdam: Elsevier/North-Holland.

    Chapter  Google Scholar 

  • Reydon, T. A. C. (2017). Philosophy of technology. Internet encyclopedia of philosophy. Retrieved from http://www.iep.utm.edu/technolo/. Accessed 20 Sept 2017.

  • Reynolds, T. S. (1986). Defining professional boundaries: chemical engineering in the early 20th century. Technology and Culture, 27(4), 694.

    Article  Google Scholar 

  • Reynolds, T. S., & Seely, B. E. (1993). Striving for balance: a hundred years of the American Society for Engineering Education. Journal of Engineering Education, 82(3), 136–151.

    Article  Google Scholar 

  • Rice, S. P. (2004). Minding the machine: languages of class in early industrial America. Berkeley: University of California Press.

    Google Scholar 

  • Rittel, H. W., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy sciences, 4(2), 155–169.

  • Rogers, G. F. C. (1983). The nature of engineering: a philosophy of technology. London: Macmillan Press.

    Book  Google Scholar 

  • Ryle, G. (1949). The concept of mind. Chicago: Chicago University Press.

    Google Scholar 

  • Schaffer, J. (2001). Knowledge, relevant alternatives and missed clues. Analysis, 61(3), 202–208.

    Article  Google Scholar 

  • Schaffer, J. (2005). What shifts?: thresholds, standards, or alternatives? In G. Preyer & G. Peter (Eds.), Contextualism in philosophy: knowledge, meaning, and truth. Oxford: Oxford University Press.

    Google Scholar 

  • Scharff, R. C., & Dusek, V. (2014). Philosophy of technology: the technological condition: an anthology. Chichester: Wiley.

    Google Scholar 

  • Schatzberg, E. (2006). Technik comes to America: changing meanings of technology before 1930. Technology and Culture, 47(3), 486–512.

    Article  Google Scholar 

  • Schatzberg, E. (2012). From art to applied science. Isis, 103(3), 555–563.

    Article  Google Scholar 

  • Scheele, M. (2005). The proper use of artefacts: a philosophical theory of the social constitution of artefact functions. Retrieved from http://resolver.tudelft.nl/uuid:ee901137-5d77-4c16-b5a6-d29a5915d624. Accessed 15 Aug 2017.

  • Schmid, H. B., Sirtes, D., & Weber, M. (Eds.). (2011). Collective epistemology. Frankfurt: Ontos Verlag.

    Google Scholar 

  • Schmitt, F. F. (1994). Socializing epistemology: the social dimensions of knowledge. Lanham: Rowman and Littlefield.

    Google Scholar 

  • Schön, D. A. (1983). The reflective practitioner: how professionals think in action. New York: Basic Books.

    Google Scholar 

  • Schön, D. A. (1988). Designing: rules, types and words. Design Studies, 9(3), 181–190.

    Article  Google Scholar 

  • Schummer, J., MacLennan, B., & Taylor, N. (2009). Aesthetic values in technology and engineering design. In A. Meijers (Ed.), Philosophy of technology and engineering sciences (pp. 1031–1068). Amsterdam: North-Holland/Elsevier.

    Chapter  Google Scholar 

  • Schyfter, P. (2016). Function and Finitism: a sociology of knowledge approach to proper technological function. In M. Franssen, P. Vermaas, P. Kroes, & A. Meijers (Eds.), Philosophy of technology after the empirical turn, Philosophy of engineering and technology (Vol. 23, pp. 305–325). Cham: Springer International Publishing.

    Google Scholar 

  • Seely, B. (1993). Research, engineering, and science in American engineering colleges: 1900-1960. Technology and Culture, 34(2), 344–386.

    Article  Google Scholar 

  • Seely, B. E. (1999). European contributions to American engineering education: blending old and new. Quaderns d’Història de l’Enginyeria, 3, 285–294.

    Google Scholar 

  • Seely, B. E. (2005). Patterns in the history of engineering education reform: a brief essay. In National Academy of Engineering. 2005. Educating the engineer of 2020: adapting engineering education to the new century (pp. 114–130). Washington, DC: The National Academies Press.

    Google Scholar 

  • Seely, B. E. (2013). The other re-engineering of engineering education, 1900-1965. Journal of Engineering Education, 88(3), 285–294.

    Article  Google Scholar 

  • Silva, É. R., Bartholo, R. and Proença, D. (2015). Engineering Brazil: national engineering capability at stake. In: S. Christensen, C. Didier, A. Jamison, M. Meganck, C. Mitcham, B. Newberry (eds) International perspectives on engineering education (pp. 95–104). Philosophy of engineering and technology 20.

  • Simon, H. A. (1996). The sciences of the artificial (3rd ed.). Cambridge: MIT Press.

    Google Scholar 

  • Smith, P. H. (2012). The body of the artisan: art and experience in the scientific revolution. Chicago: University of Chicago Press.

    Google Scholar 

  • Smith, J. M., & Lucena, J. C. (2016). Invisible innovators: how low-income, first-generation students use their funds of knowledge to belong in engineering. Engineering Studies, 8(1), 1–26.

    Article  Google Scholar 

  • Smith, C., & Whalley, P. (1996). Engineers in Britain: a study in persistence. In P. Meiksins & C. Smith (Eds.), Engineering labour: technical workers in comparative perspective (pp. 27–60). New York: Verso.

    Google Scholar 

  • Stanley, J. (2005). Knowledge and practical interests. Oxford: Oxford UP.

    Book  Google Scholar 

  • Stone, J. (2007). Contextualism and warranted assertion. Pacific Philosophical Quarterly, 88(1), 92–113.

    Article  Google Scholar 

  • Subramanian, B. (2015). Engineering education in India: a comprehensive overview. In S. Christensen, C. Didier, A. Jamison, M. Meganck, C. Mitcham, & B. Newberry (Eds.), International perspectives on engineering education, Philosophy of engineering and technology (Vol. 20, pp. 105–123). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  • Thomasson, A. L. (2003). Realism and human kinds. Philosophy and Phenomenological Research, 67(3), 580–609.

    Article  Google Scholar 

  • Ullman, D. G. (2010). The Mechanical Design Process (4th ed.). Boston: McGraw-Hill.

    Google Scholar 

  • Vaccari, A. (2013). Artefact dualism, materiality, and the hard problem of ontology: some critical remarks on the dual nature of technical artefacts program. Philosophy and Technology, 26(1), 7–29.

    Article  Google Scholar 

  • Vaesen, K., & van Amerongen, M. (2008). Optimality vs. intent: limitations of Dennett’s artifact hermeneutics. Philosophical Psychology, 21(6), 779–797.

    Article  Google Scholar 

  • Valderrama, A., et al. (2009a). Engineering education and the identities of engineers in Colombia, 1887–1972. Technology and Culture, 50(4), 811–838.

    Article  Google Scholar 

  • Valderrama, A., et al. (2009b). Engineering education and the identities of engineers in Columbia, 1887-1972. Technology and Culture, 50(4), 811–838.

    Article  Google Scholar 

  • Vermaas, P. E. (2013). The coexistence of engineering meanings of function: four responses and their methodological implications. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 27(03), 191–202.

    Article  Google Scholar 

  • Vermaas, P. E. (2016). An engineering turn in conceptual analysi. In Philosophy of technology after the empirical turn (pp. 269–282). Cham: Springer International Publishing.

    Google Scholar 

  • Vermaas, P. E., & Dorst, K. (2007). On the conceptual framework of John Gero’s FBS-model and the prescriptive aims of design methodology. Design Studies, 28(2), 133–157.

    Article  Google Scholar 

  • Vermaas, P., & Garbacz, P. (2009). Functional decomposition and mereology in engineering. In A. Meijers (Ed.), Philosophy of technology and engineering sciences (pp. 235–271). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Vermaas, P. et al. (2011). A philosophy of technology: from technical artefacts to sociotechnical systems. Synthesis Lectures on Engineers, Technology and Society, 6(1). Morgan & Claypool.

  • Vincenti, W. G. (1990). What engineers know and how they know it: analytical studies from aeronautical history. Baltimore: Johns Hopkins Univ. Press.

    Google Scholar 

  • Zhu, Q. and Jesiek, B. K. (2015). Confucianism, Marxism, and pragmatism: the intellectual contexts of engineering education in China. In Christensen S., Didier C., Jamison A., Meganck M., Mitcham C., Newberry B. (Eds.), International perspectives on engineering education (pp. 151–170). Philosophy of engineering and technology 20.

  • Zwart, S. D. (2009). Scale modelling in engineering: Froude’s case. In A. Meijers (Ed.), Handbook of the philosophy of science (pp. 759–798). Amsterdam: North-Holland.

    Google Scholar 

  • Zwart, S. D. and de Vries, M. J. (2016). Methodological classification of innovative engineering projects. In M. Franssen, P. Vermaas, P. Kroes, A. Meijers (Eds.), Philosophy of technology after the empirical turn (pp. 219–248). Philosophy of engineering and technology 23.

Download references

Acknowledgements

Vivek Kant would like to thank his teacher and mentor Scott Campbell for his encouragements towards adressing the science-engineering relationship.

Funding

Eric Kerr’s work on the project benefited from the financial support of a Singapore Ministry of Education Academic Research Fund Tier 2 grant entitled “Governing Compound Disasters in Urbanising Asia” (MOE2014-T2-1-017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Kerr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kant, V., Kerr, E. Taking Stock of Engineering Epistemology: Multidisciplinary Perspectives. Philos. Technol. 32, 685–726 (2019). https://doi.org/10.1007/s13347-018-0331-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13347-018-0331-5

Keywords

Navigation