Skip to main content
Log in

Uncertainty analysis of wind-wave predictions in Lake Michigan

  • Technical Notes
  • Published:
China Ocean Engineering Aims and scope Submit manuscript

Abstract

With all the improvement in wave and hydrodynamics numerical models, the question rises in our mind that how the accuracy of the forcing functions and their input can affect the results. In this paper, a commonly used numerical third-generation wave model, SWAN is applied to predict waves in Lake Michigan. Wind data are analyzed to determine wind variation frequency over Lake Michigan. Wave predictions uncertainty due to wind local effects are compared during a period where wind has a fairly constant speed and direction over the northern and southern basins. The study shows that despite model calibration in Lake Michigan area, the model deficiency arises from ignoring wind effects in small scales. Wave prediction also emphasizes that small scale turbulence in meteorological forces can increase prediction errors by 38%. Wave frequency and coherence analysis show that both models can predict the wave variation time scale with the same accuracy. Insufficient number of meteorological stations can result in neglecting local wind effects and discrepancies in current predictions. The uncertainty of wave numerical models due to input uncertainties and model principals should be taken into account for design risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Battjes, J. A., 2006. Developments in coastal engineering research, Coast. Eng., 53(2–3): 121–132.

    Article  Google Scholar 

  • Beletsky, D., Schwab, D. and McCormick, M., 2006. Modeling the 1998–2003 summer circulation and thermal structure in Lake Michigan, Journal of Geophysical Research: Oceans, 111(C10): C10010.

    Article  Google Scholar 

  • Blumberg, A. F. and Georgas, N., 2008. Quantifying uncertainty in estuarine and coastal ocean circulation modeling, J. Hydraul. Eng., ASCE, 134(4): 403–415.

    Article  Google Scholar 

  • Booij, N., Ris, R. C. and Holthuijsen, L. H., 1999. A third-generation wave model for coastal regions 1. Model description and validation, Journal of Geophysical Research: Oceans, 104(C4): 7649–7666.

    Article  Google Scholar 

  • Dragani, W. C. and Romero, S. I., 2004. Impact of a possible local wind change on the wave climate in the upper Rio De La Plata, Int. J. Climatol., 24(9): 1149–1157.

    Article  Google Scholar 

  • Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D., Mann, M. E., Robertson, A. W., Saunders, A., Tian, Y., Varadi, F. and Yiou, P., 2002. Advanced spectral methods for climatic time series, Rev. Geophys., 40(1): 1–41.

    Article  Google Scholar 

  • Hamidi, S. A., Bravo, H. R., Klump, J. V. and Waples, J. T., 2015. The role of circulation and heat fluxes in the formation of stratification leading to hypoxia in Green Bay, Lake Michigan, Journal of Great Lakes Research, 41(4): 1024–1036.

    Article  Google Scholar 

  • Hamidi, S. A., Bravo, H. R. and Klump, J. V., 2013. Evidence of multiple physical drivers on the circulation and thermal regime in the Green Bay of Lake Michigan, in: World Environmental and Water Resources Congress, ASCE, 1719–1726.

    Google Scholar 

  • Jalili, S., Hamidi, S. A. and Ghanbari, R. N., 2015. Climate variability and anthropogenic effects on Lake Urmia water level fluctuations, Northwestern Iran, Hydrolog. Sci. J., doi:10.1080/02626667.2015.1036757.

    Google Scholar 

  • Jönsson, A., Danielsson, A. and Rahm, L., 2005. Bottom type distribution based on wave friction velocity in the Baltic Sea, Cont. Shelf Res., 25(3): 419–435.

    Article  Google Scholar 

  • Lin, P. Z. and Li, C. W., 2002. A σ-coordinate three-dimensional numerical model for surface wave propagation, Int. J. Numer. Meth. Fl., 38(11): 1045–1068.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, P. C., 2000. Wave grouping characteristics in nearshore Great Lakes, Ocean Eng., 27(11): 1221–1230.

    Article  Google Scholar 

  • Liu, P. C., Schwab, D. J. and Bennett, J. R., 1984. Comparison of a two-dimensional wave prediction model with synoptic measurements in Lake Michigan, J. Phys. Oceanogr., 14(19): 1514–1518.

    Article  Google Scholar 

  • Moeini, M. H. and Etemad-Shahidi, A., 2007. Application of two numerical models for wave hindcasting in Lake Erie, Appl. Ocean Res., 29(3): 137–145.

    Article  Google Scholar 

  • Monbaliu, J., Padilla-Hernández, R., Hargreaves, J. C., Carretero Albiach, J. C., Luo, W. M., Sclavo, M. and Günther, H., 1999. The spectral wave model, WAM, adapted for applications with high spatial resolution, Coast. Eng., 41(1): 41–62.

    Google Scholar 

  • Nielsen, M., 1999. A method for spatial interpolation of wind climatologies, Wind Energy, 2(3): 151–166.

    Article  Google Scholar 

  • Rao, D. B., Mortimer, C. H. and Schwab, D. J., 1976. Surface normal modes of Lake Michigan: Calculations compared with spectra of observed water level fluctuations, J. Phys. Oceanogr., 6(4): 575–588.

    Article  Google Scholar 

  • Resio, D. T. and Perrie, W., 1989. Implications of an f−4 equilibrium range for wind-generated waves, J. Phys. Oceanogr., 19(2): 193–204.

    Article  Google Scholar 

  • Saylor, J. H., Miller, G. S. and Gottlieb, E. S., 1995. Near-Resonant Wind Forcing of Internal Seiches in Green Bay, Lake Michigan, NOAA GLERL Contribution Number 790.

    Google Scholar 

  • Schwab, D. J. and Morton, J. A., 1984. Estimation of overlake wind speed from overland wind speed: A comparison of three methods, Journal of Great Lake Research, 10(1): 68–72.

    Article  Google Scholar 

  • Schwab, D. J., 1978. Simulation and forecasting of Lake Erie storm surges, Mon. Weather Rev., 106, 1476–1487.

    Article  Google Scholar 

  • Sebastião, P., Guedes Soares, C. and Booji, N., 2000. Wave hindcasting off the coast of Portugal, Coast. Eng., 40(4): 411–425.

    Article  Google Scholar 

  • Soomere, T. and Keevallik, S., 2003. Directional and extreme wind properties in Gulf of Finland, Proceedings of the Estonian Academy of Sciences, Engineering, 9(2): 73–90.

    Google Scholar 

  • The WAMDI Group, 1988. The WAM model–A third generation ocean wave prediction model, J. Phys. Oceanogr., 18(12): 1775–1810.

    Article  Google Scholar 

  • Thomson, D. J., 1982. Spectrum estimation and harmonic analysis, Proc. IEEE, 70(9): 1055–1096.

    Article  Google Scholar 

  • Vikebø, F., Furevik, T., Furnes, G., Kvamstø, N. G. and Reistad, M., 2002. Wave height variations in the North Sea and on the Norwegian Continental Shelf, 1881–1999, Cont. Shelf Res., 23(3–4): 251–263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad Ahmad Hamidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nekouee, N., Ataie-Ashtiani, B. & Hamidi, S.A. Uncertainty analysis of wind-wave predictions in Lake Michigan. China Ocean Eng 30, 811–820 (2016). https://doi.org/10.1007/s13344-016-0052-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13344-016-0052-4

Key words

Navigation