Skip to main content
Log in

Partial Taylor sums on local Dirichlet spaces

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

The partial Taylor sums \(S_n\), \(n \ge 0\), are finite rank operators on any Banach space of analytic functions on the open unit disc. In the classical setting of disc algebra \({\mathcal {A}}\), the precise value of \(\Vert S_n\Vert _{{\mathcal {A}} \rightarrow {\mathcal {A}}}\) is not known. These numbers are referred as the Lebesgue constants and they grow like \(\log n\), modulo a multiplicative constant, when n tends to infinity. In this note, we study \(\Vert S_n\Vert \) when it acts on the local Dirichlet space \({\mathcal {D}}_\zeta \). There are several distinguished ways to put a norm on \({\mathcal {D}}_\zeta \) and each choice naturally leads to a different operator norm for \(S_n\), as an operator on \({\mathcal {D}}_\zeta \). We consider three different norms on \({\mathcal {D}}_\zeta \) and, in each case, evaluate the precise value of \(\Vert S_n\Vert _{{\mathcal {D}}_\zeta \rightarrow {\mathcal {D}}_\zeta }\). In all cases, we also show that the maximizing function is unique. These formulas indicate that \(\Vert S_n\Vert _{{\mathcal {D}}_\zeta \rightarrow {\mathcal {D}}_\zeta } \asymp \sqrt{n}\) as n grows. Hence, in the light of uniform boundedness principle, there is a function \(f \in {\mathcal {D}}_\zeta \) such that the local sequence \(\Vert S_nf\Vert _{{\mathcal {D}}_{\zeta }}\), \(n \ge 1\), is unbounded. We provide two explicit constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data availibility

NA.

References

  1. Aleman, A.: The Multiplication Operator on Hilbert Spaces of Analytic Functions. Habilitationsschrift, Fern Universität, Hagen (1993)

    Google Scholar 

  2. Arcozzi, N., Rochberg, R., Sawyer, E.T., Wick, B.D.: The Dirichlet Space and Related Function Spaces. Mathematical Surveys and Monographs, vol. 239. American Mathematical Society, Providence (2019)

    Book  MATH  Google Scholar 

  3. Bergman, S.: The Kernel Function and Conformal Mapping. Mathematical Surveys, No. V, revised edn. American Mathematical Society, Providence (1970)

  4. Beurling, A., Deny, J.: Espaces de Dirichlet. I. Le cas élémentaire. Acta Math. 99, 203–224 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beurling, A., Deny, J.: Dirichlet spaces. Proc. Natl. Acad. Sci. USA 45, 208–215 (1959)

    Article  MATH  Google Scholar 

  6. Beurling, A.: Études sur un problème de majoration. Thesis (Ph.D.)–Uppsala University (Sweden) (1933)

  7. Cowen, C.C., Dritschel, M.A., Penney, R.C.: Norms of Hadamard multipliers. SIAM J. Matrix Anal. Appl. 15(1), 313–320 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duren, P.L.: On the multipliers of \(H^{p}\) spaces. Proc. Am. Math. Soc. 22, 24–27 (1969)

    MATH  Google Scholar 

  9. Duren, P.L., Shields, A.L.: Coefficient multipliers of \(H^{p}\) and \(B^{p}\) spaces. Pac. J. Math. 32, 69–78 (1970)

    Article  MATH  Google Scholar 

  10. Duren, P., Schuster, A.: Bergman Spaces. Mathematical Surveys and Monographs, vol. 100. American Mathematical Society, Providence (2004)

    MATH  Google Scholar 

  11. Duren, P.L.: Theory of \(H^{p}\) Spaces. Pure and Applied Mathematics, vol. 38. Academic Press, New York (1970)

    Google Scholar 

  12. El-Fallah, O., Kellay, K., Mashreghi, J., Ransford, T.: A Primer on the Dirichlet Space. Cambridge Tracts in Mathematics, vol. 203. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  13. Fricain, E., Mashreghi, J.: Orthonormal polynomial basis in local Dirichlet spaces. Acta Sci. Math. (Szeged) 87(3–4), 595–613 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garcia, S.R., Mashreghi, J., Ross, W.T.: Introduction to Model Spaces and their Operators, volume 148 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  15. Hardy, G.H., Littlewood, J.E.: Notes on the theory of series (XX): generalizations of a theorem of Paley. Q. J. Math. Oxf. Ser. 8, 161–171 (1937)

    Article  MATH  Google Scholar 

  16. Hardy, G.H., Littlewood, J.E.: Theorems concerning mean values of analytic or harmonic functions. Q. J. Math. Oxf. Ser. 12, 221–256 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Graduate Texts in Mathematics, vol. 199. Springer, New York (2000)

    Book  MATH  Google Scholar 

  18. Hedlund, J.H.: Multipliers of \(H^{p}\) spaces. J. Math. Mech. 18, 1067–1074 (1968/1969)

  19. Hedlund, J.H.: Multipliers of \(H^{1}\) and Hankel matrices. Proc. Am. Math. Soc. 22, 20–23 (1969)

    MATH  Google Scholar 

  20. Koosis, P.: Introduction to \(H_p\) Spaces, volume 115 of Cambridge Tracts in Mathematics, 2nd edn. Cambridge University Press, Cambridge (1998). With two appendices by V. P. Havin [Viktor Petrovich Khavin]

  21. MacGregor, T.H., Sterner, M.P.: Hadamard products with power functions and multipliers of Hardy spaces. J. Math. Anal. Appl. 282(1), 163–176 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mashreghi, J.: Representation Theorems in Hardy Spaces. London Mathematical Society Student Texts, vol. 74. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  23. Mashreghi, J., Ransford, T.: Hadamard multipliers on weighted Dirichlet spaces. Integr. Equ. Oper. Theory 91(6), Paper No. 52, 13 (2019)

  24. Richter, S.: Invariant subspaces of the Dirichlet shift. J. Reine Angew. Math. 386, 205–220 (1988)

    MathSciNet  MATH  Google Scholar 

  25. Trybula, M.: Hadamard multipliers on spaces of holomorphic functions. Integr. Equ. Oper. Theory 88(2), 249–268 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zygmund, A.: Trigonometric Series, vol. I, II. Cambridge Mathematical Library, 3rd edn. Cambridge University Press, Cambridge. With a foreword by Robert A. Fefferman (2002)

Download references

Funding

The first author was supported by an NSERC Discovery Grant.

Author information

Authors and Affiliations

Authors

Contributions

All authors worked and contributed equally to the manuscript.

Corresponding author

Correspondence to J. Mashreghi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests

Ethical approval

NA.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashreghi, J., Shirazi, M. & Withanachchi, M. Partial Taylor sums on local Dirichlet spaces. Anal.Math.Phys. 12, 147 (2022). https://doi.org/10.1007/s13324-022-00756-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-022-00756-9

Keywords

Mathematics Subject Classification

Navigation