Skip to main content
Log in

Double-periodic soliton solutions for the new (2 + 1)-dimensional KdV equation in fluid flows and plasma physics

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

Based on the extended homoclinic test technique, we introduce an ansätz functions to construct double periodic-soliton solutions of new (2 + 1)-Dimensional KdV Equation. Some entirely new double periodic-soliton solutions are obtained. The obtained solutions show that there exist multiple-periodic solitary waves in the different directions for the new (2 + 1)-Dimensional KdV Equation. With the help of symbolic computation, the properties for these new solutions are presented with some figures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Liu, J.G., Zeng, Z.F.: Multiple soliton solutions, soliton-type solutions and rational solutions for the (3 + 1)-dimensional potential-YTSF equation. Indian J. Pure Appl. Math. 45, 989–1002 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Green, P., Biswas, A.: Bright and dark optical solitons with time-dependent coefficients in a non-Kerr law media. Commun. Nonlinear Sci. Numer. Simul. 15, 3865–3873 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Gao, L.N., Zi, Y.Y., Yin, Y.H., Ma, W.X., Lü, X.: Bäcklund transformation, multiple wave solutions and lump solutions to a (3 + 1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 89, 2233–2240 (2017)

    Google Scholar 

  4. Gao, L.N., Zhao, X.Y., Zi, Y.Y., Yu, J., Lü, X.: Resonant behavior of multiple wave solutions to a Hirota bilinear equation. Comput. Math. Appl. 76, 1225–1229 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Wazwaz, A.M.: New (3 + 1)-dimensional nonlinear evolution equations with mKdV equation constituting its main part: multiple soliton solutions. Chaos Solitons Fractals 76, 93–97 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Anwar, J.M.J., Marko, P., Anjan, B.: Soliton solutions for nonlinear Calaogero–Degasperis and potential Kadomtsev–Petviashvili equation. Comput. Math. Appl. 62(6), 2621–2628 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Chen, S.J., Ma, W.X., Lü, X.: Bäcklund transformation, exact solutions and interaction behaviour of the (3 + 1)-dimensional Hirota–Satsuma–Ito-like equation. Commun. Nonlinear Sci. 83, 105135 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Xu, H.N., Ruan, W.Y., Zhang, Y., Lü, X.: Multi-exponential wave solutions to two extended Jimbo–Miwa equations and the resonance behavior. Appl. Math. Lett. 99, 105976 (2020)

    MathSciNet  MATH  Google Scholar 

  9. Lü, X., Chen, S.T., Ma, W.X.: Constructing lump solutions to a generalized Kadomtsev–Petviashvili–Boussinesq equation. Nonlinear Dyn. 86(1), 523–534 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Lü, X., Ma, W.X.: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85, 1217–1222 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Lü, X., Ma, W.X., Yu, J., Khalique, C.M.: Solitary waves with the Madelung fluid description: a generalized derivative nonlinear Schrödinger equation. Commun. Nonlinear. Sci. 31, 40–46 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Jia, S.L., Gao, Y.T., Hu, L.: Rogue waves, breather-to-soliton transitions and modulational instability for the nonlinear Schrödinger equation with octic operator in an optical fiber. Optik 142, 90–102 (2017)

    Google Scholar 

  13. Liu, J.G., Zhu, W.H., Zhou, L.: Interaction solutions for Kadomtsev–Petviashvili equation with variable coefficients. Commun. Theor. Phys. 71, 793–797 (2019)

    MathSciNet  Google Scholar 

  14. Xia, J.W., Zhao, Y.W., Lü, X.: Predictability, fast calculation and simulation for the interaction solution to the cylindrical Kadomtsev–Petviashvili equation. Commun. Nonlinear Sci. 88, 105260 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Lan, Z.Z., Gao, B.: Solitons, breather and bound waves for a generalized higher-order nonlinear Schrödinger equation in an optical fiber or a planar waveguide. Eur. Phys. J. Plus 132(12), 512 (2017)

    Google Scholar 

  16. Eslami, M.: Solitary wave solutions for perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity under the DAM. Optik 126(13), 1312–1317 (2015)

    Google Scholar 

  17. Chen, S.J., Yin, Y.H., Ma, W.X., Lü, X.: Abundant exact solutions and interaction phenomena of the (2 + 1)-dimensional YTSF equation. Anal. Math. Phys. 9, 2329–2344 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Jia, S.L., Gao, Y.T., Hu, W.Q., Su, J.J., Deng, G.F.: Solitons and breather waves for a (2 + 1)-dimensional Sawada–Kotera equation. Mod. Phys. Lett. B 31(22), 1750129 (2017)

    MathSciNet  Google Scholar 

  19. Liu, J.G., Zhu, W.H., He, Y., Lei, Z.Q.: Characteristics of lump solutions to a (3 + 1)-dimensional variable-coefficient generalized shallow water wave equation in oceanography and atmospheric science. Eur. Phys. J. Plus 134, 385 (2019)

    Google Scholar 

  20. Anjan, B.: 1-Soliton solution of the generalized Camassa–Holm Kadomtsev–Petviashvili equation. Commun. Nonlinear. Sci. 14(6), 2524–2527 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Lü, X., Wang, J.P., Lin, F.H., Zhou, X.W.: Lump dynamics of a generalized two-dimensional Boussinesq equation in shallow water. Nonlinear Dyn. 91, 1249–1259 (2018)

    Google Scholar 

  22. Lü, X., Ma, W.X., Chen, S.T., Chaudry, M.K.: A note on rational solutions to a Hirota–Satsuma-like equation. Appl. Math. Lett. 58, 13–18 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Lü, X., Lin, F.H.: Soliton excitations and shape-changing collisions in alpha helical proteins with interspine coupling at higher order. Commun. Nonlinear. Sci. 32, 241–261 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Liu, J.G., Zhu, W.H.: Breather wave solutions for the generalized shallow water wave equation with variable coefficients in the atmosphere, rivers, lakes and oceans. Comput. Math. Appl. 78(3), 848–856 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Liu, J.G., Zeng, Z.F., He, Y., Ai, G.P.: Class of exact solution of (3 + 1)-dimensional generalized shallow water equation system. Int. J. Nonlinear Sci. Numer. 216(1), 43–48 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Hua, Y.F., Guo, B.L.G., Ma, W.X., Lü, X.: Interaction behavior associated with a generalized (2 + 1)-dimensional Hirota bilinear equation for nonlinear waves. Appl. Math. Model. 74, 184–198 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Meng, G.Q., Gao, Y.T., Yu, X., Shen, Y.J., Qin, Y.: Multisoliton solutions for the coupled nonlinear Schrödinger type equations. Nonlinear Dyn. 70, 609–617 (2012)

    Google Scholar 

  28. Hirota, R.: Exact solutions of the Korteweg–de Vries equation for multiple collision of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    MATH  Google Scholar 

  29. Fan, E., Zhang, H.: Anote on the homogeneous balance method. Phys. Lett. A 246, 403–406 (1998)

    MATH  Google Scholar 

  30. Fan, E.: Two new applications of the homogeneous balance method. Phys. Lett. A 265, 353–357 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Senthilvelan, M.: On the extended applications of homogeneous balance method. Appl. Math. Comput. 123, 381–388 (2001)

    MathSciNet  MATH  Google Scholar 

  32. Zhang, S.: The periodic wave solutions for the (2 + 1) dimensional Konopelchenko–Dubrovsky equations. Chaos Solitons Fractals 30, 1213–1220 (2006)

    MathSciNet  MATH  Google Scholar 

  33. Dai, C.Q., Wang, Y.Y., Zhang, J.F.: Analytical spatiotemporal localizations for the generalized (3 + 1)-dimensional nonlinear Schrödinger equation. Opt. Lett. 35, 1437–1439 (2010)

    Google Scholar 

  34. Jia, S.L., Gao, Y.T., Ding, C.C., Deng, G.F.: Solitons for a (2 + 1)-dimensional Sawada–Kotera equation via the Wronskian technique. Appl. Math. Lett. 74, 193–198 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Wu, G.C., Xia, T.C.: Uniformly constructing exact discrete soliton solutions and periodic solutions to differential–difference equations. Comput. Math. Appl. 58, 2351–2354 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Dai, Z.D., Lin, S.Q., Fu, H.M., Zeng, X.P.: Exact three-wave solutions for the KP equation. Appl. Math. Comput. 216(5), 1599–1604 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Wang, C.J., Dai, Z.D., Mu, G., Lin, S.Q.: New exact periodic solitary-wave solutions for new (2 + 1)-dimensional KdV equation. Commun. Theor. Phys. 52, 862–864 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Zeng, X.P., Dai, Z.D., Li, D.L.: New periodic soliton solutions for the (3 + 1)-dimensional potential-YTSF equation. Chaos Solitons Fractals 42, 657–661 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)

    MATH  Google Scholar 

  40. Ablowitz, M.J., Clarkson, P.A.: Solitons. Nonlinear Evolution Equation and Inverse Scattering. Cambridge University Press, New York (1991)

    MATH  Google Scholar 

  41. Ablowitz, M.J., Musslimani, dZH: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110(6), 064105 (2013)

    Google Scholar 

  42. Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 29(3), 915–946 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Biswas, A., Ismail, M.S.: 1-Soliton solution of the coupled KdV equation and Gear Grimshaw model. Appl. Math. Comput. 216, 3662–3670 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Wang, D.S.: Integrability of a coupled KdV system: Painlevé property Lax pair and Bäklund transformation. Appl. Math. Comput. 216, 1349–1354 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Shen, S.F.: Lie symmetry analysis and Painlevé analysis of the new (2 + 1)-dimensional KdV equation. Appl. Math. J. Chin. Univ. Ser. B 22(2), 207–212 (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Guo Liu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project supported by National Natural Science Foundation of China (Grant No. 81160531).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JG., Zhu, WH., Lei, ZQ. et al. Double-periodic soliton solutions for the new (2 + 1)-dimensional KdV equation in fluid flows and plasma physics. Anal.Math.Phys. 10, 41 (2020). https://doi.org/10.1007/s13324-020-00387-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-020-00387-y

Keywords

Navigation