Skip to main content
Log in

\(C^{1,\alpha }\)-subelliptic regularity on \({{\,\mathrm{SU}\,}}(3)\) and compact, semi-simple Lie groups

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

Let the vector fields \(X_1, \ldots , X_{6}\) form an orthonormal basis of \(\mathcal {H}\), the orthogonal complement of a Cartan subalgebra (of dimension 2) in \({{\,\mathrm{SU}\,}}(3)\). We prove that weak solutions u to the degenerate subelliptic p-Laplacian

$$\begin{aligned} \Delta _{\mathcal {H},{p}} u(x)=\sum _{i=1}^{6} X_i^{*}\left( |\nabla _{\!{\mathcal {H}}}u|^{p-2}X_{i}u \right) =0, \end{aligned}$$

have Hölder continuous horizontal derivatives \(\nabla _{\!{\mathcal {H}}}u=(X_1u, \ldots , X_{6}u)\) for \(p\ge 2\). We also prove that a similar result holds for all compact connected semisimple Lie groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arvanitoyeorgos, A.: An Introduction to Lie Groups and the Geometry of Homogeneous Spaces, Volume 22 of Student Mathematical Library. American Mathematical Society, Providence, RI, 2003. Translated from the 1999 Greek original and revised by the author

  2. Capogna, L.: Regularity of quasi-linear equations in the Heisenberg group. Commun. Pure Appl. Math. 50(9), 867–889 (1997)

    Article  MathSciNet  Google Scholar 

  3. Capogna, L.: Regularity for quasilinear equations and \(1\)-quasiconformal maps in Carnot groups. Math. Ann. 313(2), 263–295 (1999)

    Article  MathSciNet  Google Scholar 

  4. Capogna, L., Citti, G.: Regularity for subelliptic PDE through uniform estimates in multi-scale geometries. Bull. Math. Sci. 6(2), 173–230 (2016)

    Article  MathSciNet  Google Scholar 

  5. Capogna, L., Citti, G., Le Donne, E., Ottazzi, A.: Conformality and Q-harmonicity in sub-Riemannian manifolds. J. Math. Pures Appl. 122, 67–124 (2019)

    Article  MathSciNet  Google Scholar 

  6. Domokos, A., Manfredi, J.J.: Nonlinear subelliptic equations. Manuscripta Math. 130(2), 251–271 (2009)

    Article  MathSciNet  Google Scholar 

  7. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing Co., Inc., River Edge (2003)

    Book  Google Scholar 

  8. Hoffmann, K.H., Morris, S.A.: The Structure of Compact Groups. de Gruyter Studies in Mathematics, vol. 25. Walter de Gruyter Gmbh, Berlin (2006)

    Book  Google Scholar 

  9. Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MathSciNet  Google Scholar 

  10. Kinnunen, J., Marola, N., Miranda Jr., M., Paronetto, F.: Harnack’s inequality for parabolic De Giorgi classes in metric spaces. Adv. Differ. Equ. 17(9–10), 801–832 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Kinnunen, J., Shanmugalingam, N.: Regularity of quasi-minimizers on metric spaces. Manuscripta Math. 105(3), 401–423 (2001)

    Article  MathSciNet  Google Scholar 

  12. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York-London (1968)

  13. Manfredi, J.J., Mingione, G.: Regularity results for quasilinear elliptic equations in the Heisenberg group. Math. Ann. 339(3), 485–544 (2007)

    Article  MathSciNet  Google Scholar 

  14. Mukherjee, S., Zhong, X.: \({C}^{1,\alpha }\)-regularity for variational problems in the Heisenberg group. arXiv:1711.04671 (2017)

  15. Mingione, G., Zatorska-Goldstein, A., Zhong, X.: Gradient regularity for elliptic equations in the Heisenberg group. Adv. Math. 222(1), 62–129 (2009)

    Article  MathSciNet  Google Scholar 

  16. Ricciotti, D.: \(p\)-Laplace equation in the Heisenberg group. SpringerBriefs in Mathematics. Springer, Cham; BCAM Basque Center for Applied Mathematics, Bilbao. Regularity of solutions, BCAM SpringerBriefs (2015)

  17. Ricciotti, D.: On the \(C^{1,\alpha }\) regularity of \(p\)-harmonic functions in the Heisenberg group. Proc. Am. Math. Soc. 146(7), 2937–2952 (2018)

    Article  MathSciNet  Google Scholar 

  18. Rothschild, L.P., Stein, E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137(3–4), 247–320 (1976)

    Article  MathSciNet  Google Scholar 

  19. Varopoulos, N., Saloff-Coste, L., Coulhon, T.: Analysis and Geometry on Groups. Cambridge Tracts in Mathematics, vol. 100. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  20. Zhong, X.: Regularity for variational problems in the Heisenberg group. arXiv:1711.03284v1 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Domokos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domokos, A., Manfredi, J.J. \(C^{1,\alpha }\)-subelliptic regularity on \({{\,\mathrm{SU}\,}}(3)\) and compact, semi-simple Lie groups. Anal.Math.Phys. 10, 4 (2020). https://doi.org/10.1007/s13324-019-00350-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-019-00350-6

Keywords

Mathematics Subject Classification

Navigation