Skip to main content
Log in

Abundant exact solutions and interaction phenomena of the (2 + 1)-dimensional YTSF equation

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study abundant exact solutions including the lump and interaction solutions to the (2 + 1)-dimensional Yu–Toda–Sasa–Fukuyama equation. With symbolic computation, lump solutions and the interaction solutions are generated directly based on the Hirota bilinear formulation. Analyticity and well-definedness is guaranteed through some conditions posed on the parameters. With special choices of the involved parameters, the interaction phenomena are simulated and discussed. We find the lump moves from one hump to the other hump of the two-soliton, while the lump separates from the hump of the one-soliton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Serrano, A.M., Mellibovsky, F.: On a solenoidal Fourier–Chebyshev spectral method for stability analysis of the Hagen–Poiseuille flow. Appl. Numer. Math. 57(8), 920–938 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Panizzi, S.: Low regularity global solutions for nonlinear evolution equations of Kirchhoff type. J. Math. Anal. Appl. 332(2), 1195–1215 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wazwaz, A.M., El-Tantawy, S.A.: New (3+1)-dimensional equations of Burgers type and Sharma–Tasso–Olver type: multiple-soliton solutions. Nonlinear Dyn. 87(4), 1–5 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Lü, X., Wang, J.P., Lin, F.H., et al.: Lump dynamics of a generalized two-dimensional Boussinesq equation in shallow water. Nonlinear Dyn. 91(2), 1249–1259 (2018)

    Article  Google Scholar 

  5. Lin, F.H., Chen, S.T., Qu, Q.X., Wang, J.P., Zhou, X.W., Lü, X.: Resonant multiple wave solutions to a new (3+1)-dimensional generalized Kadomtsev–Petviashvili equation: linear superposition principle. Appl. Math. Lett. 78, 112–117 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Xu, H.N., Ruan, W.Y., Zhang, Y., Lü, X.: Multi-exponential wave solutions to two extended Jimbo-Miwa equations and the resonance behavior. Appl. Math. Lett. 99, 105976 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hua, Y.-F., Guo, B.-L., Ma, W.-X., Lü, X.: Interaction behavior associated with a generalized (2 + 1)-dimensional Hirota bilinear equation for nonlinear waves. Appl. Math. Model. 74, 184–198 (2019)

    Article  MathSciNet  Google Scholar 

  8. Yin, Y.-H., Ma, W.-X., Liu, J.-G., Lü, X.: Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction. Comput. Math. Appl. 76, 1275–1283 (2018)

    Article  MathSciNet  Google Scholar 

  9. Gao, L.-N., Zi, Y.-Y., Yin, Y.-H., Ma, W.-X., Lü, X.: Bäcklund transformation, multiple wave solutions and lump solutions to a (3 + 1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 89, 2233–2240 (2017)

    Article  Google Scholar 

  10. Gao, L.-N., Zhao, X.-Y., Zi, Y.-Y., Yu, J., Lü, X.: Resonant behavior of multiple wave solutions to a Hirota bilinear equation. Comput. Math. Appl. 72, 1225–1229 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 29(3), 915–946 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fokou, M., Kofane, T.C., Mohamadou, A., Yomba, E.: One-and two-soliton solutions to a new KdV evolution equation with nonlinear and nonlocal terms for the water wave problem. Nonlinear Dyn. 83(4), 2461–2473 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  14. Lü, X., Lin, F.-H., Qi, F.-H.: Analytical study on a two-dimensional Korteweg-de Vries model with bilinear representation. Bäcklund transformation and soliton solutions. Appl. Math. Model. 39, 3221–3226 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lü, X., Ma, W.-X.: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85, 1217–1222 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Conte, R., Musette, M.: Painlevé analysis and Bäcklund transformation in the Kuramoto–Sivashinsky equation. J. Phys. A Math. Gen. 22(2), 169–177 (1989)

    Article  MATH  Google Scholar 

  17. Jimbo, M., Kruskal, M.D., Miwa, T.: Painlevé test for the self-dual Yang–Mills equation. Phys. Lett. A 92(2), 59–60 (1982)

    Article  MathSciNet  Google Scholar 

  18. Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379(36), 1975–1978 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yang, J.Y., Ma, W.X.: Abundant interaction solutions of the KP equation. Nonlinear Dyn. 89(2), 1–6 (2017)

    MathSciNet  Google Scholar 

  20. Manakov, S.V., Zakharov, V.E., Bordag, L.A., Its, A.R., Matveev, V.B.: Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction. Phys. Lett. A 63(3), 205–206 (1977)

    Article  Google Scholar 

  21. Gilson, C.R., Nimmo, J.J.C.: Lump solutions of the BKP equation. Phys. Lett. A 147(8–9), 472–476 (1990)

    Article  MathSciNet  Google Scholar 

  22. Lü, X., Chen, S.T., Ma, W.X.: Constructing lump solutions to a generalized Kadomtsev–Petviashvili–Boussinesq equation. Nonlinear Dyn. 86(1), 523–534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, C.: Spatiotemporal deformation of lump solution to (2+1)-dimensional KdV equation. Nonlinear Dyn. 84(2), 697–702 (2016)

    Article  MathSciNet  Google Scholar 

  24. Lü, J., Bilige, S., Chaolu, T.: The study of lump solution and interaction phenomenon to (2+1)-dimensional generalized fifth-order KdV equation. Nonlinear Dyn. 13, 1–8 (2017)

    Google Scholar 

  25. Tang, Y., Tao, S., Zhou, M., Guan, Q.: Interaction solutions between lump and other solitons of two classes of nonlinear evolution equations. Nonlinear Dyn. 89(2), 1–14 (2017)

    MathSciNet  Google Scholar 

  26. Tang, Y., Tao, S., Guan, Q.: Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations. Comput. Math. Appl. 72(9), 2334–2342 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lu, Z., Tian, E.M., Grimshaw, R.: Interaction of two lump solitons described by the Kadomtsev–Petviashvili I equation. Wave Motion 40(2), 123–135 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tan, W., Dai, Z.: Dynamics of kinky wave for (3+1)-dimensional potential Yu–Toda–Sasa–Fukuyama equation. Nonlinear Dyn. 85(2), 817–823 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yu, S.J., Toda, K., Sasa, N., Fukuyama, T.: N soliton solutions to the Bogoyavlenskii–Schiff equation and a quest for the soliton solution in (3 + 1) dimensions. J. Phys. A Gen. Phys. 31(14), 3337–3347 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hamed, Y.S., Sayed, M., Elagan, S.K., Elzahar, E.R.: The improved-expansion method for solving (3+1)-dimensional potential-YTSF equation. J. Mod. Methods Numer. Math. 2(1–2), 32–38 (2011)

    MATH  Google Scholar 

  31. Zeng, Z.F., Liu, J.G., Nie, B.: Multiple-soliton solutions, soliton-type solutions and rational solutions for the (3+1)-dimensional generalized shallow water equation in oceans, estuaries and impoundments. Nonlinear Dyn. 86(1), 1–9 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sun, H.Q., Chen, A.H.: Rational solutions and lump solutions of the potential YTSF equation. Zeitschrift für Naturforschung A 72(7), 665–672 (2017)

    Article  Google Scholar 

  33. Liu, J., Zeng, Z.: Multiple soliton solutions, soliton-type solutions and rational solutions for the (3+1)-dimensional potential-YTSF equation. Indian J. Pure Appl. Math. 45(6), 989–1002 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hu, Y., Chen, H., Dai, Z.: New kink multi-soliton solutions for the (3+1)-dimensional potential-Yu–Toda–Sasa–Fukuyama equation. Appl. Math. Comput. 234, 548–556 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Dai, Z., Liu, J., Li, D.: Applications of HTA and EHTA to YTSF equation. Appl. Math. Comput. 207(2), 360–364 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 71971015, and the Fundamental Research Funds for the Central Universities of China (2018RC031). Y. H. Yin is supported by the Project of National Innovation and Entrepreneurship Training Program for College Students under Grant No. 201710004054.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Xiu Ma or Xing Lü.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

For simplicity, we consider three cases with \(a_{1}=0\), \(a_{2}=0\) or \(a_{10}=0\), respectively:

Case 1

$$\begin{aligned} \Bigg \{&a_{1}=a_{1}, a_{2}=0, a_{3}=-\frac{3(a_{1}^2+a_{5}^2)a_{9}^2}{4a_{1}}, a_{4}=a_{4}, a_{5}=a_{5}, a_{6}=\varepsilon \frac{(a_{1}^2+a_{5}^2)a_{9}}{a_{1}},\\&a_{7}=\frac{3a_{5}a_{9}^2(a_{1}^2+a_{5}^2)}{4a_{1}^2}, a_{8}=a_{8}, a_{9}=a_{9}, a_{10}=\varepsilon \frac{a_{5}a_{9}^2}{a_{1}}, a_{11}=-\frac{a_{9}^3(a_{1}^2-3\,a_{5}^2)}{4a_{1}^2},\\&a_{12}=a_{12}, a_{13}=\frac{4\,a_{1}^2+8\,a_{1}^2a_{5}^2+4\,a_{5}^4+a_{9}^4}{4a_{9}^2(a_{1}^2+a_{5}^2)}\Bigg \}, \end{aligned}$$

Case 2

$$\begin{aligned} \Bigg \{&a_{1}=0, a_{2}=\varepsilon \,a_{5}a_{9}, a_{3}=\varepsilon \,\frac{3}{2}\,a_{6}a_{9}, a_{4}=a_{4}, a_{5}=a_{5}, a_{6}=a_{6},\\&a_{7}=-\frac{3(a_{5}^2a_{9}^2-a_{6}^2)}{4a_{5}}, a_{8}=a_{8}, a_{9}=a_{9},a_{10}=\frac{a_{6}a_{9}}{a_{5}},\\&a_{11}=-\frac{a_{9}(a_{5}^2a_{9}^2-3\,a_{6}^2)}{4a_{5}^2}, a_{12}=a_{12},a_{13}=\frac{4\,a_{5}^4+a_{9}^4}{4a_{5}^2a_{9}^2}\Bigg \}, \end{aligned}$$

Case 3

$$\begin{aligned} \Bigg \{&a_{1}=a_{1}, a_{2}=\varepsilon \,a_{5}a_{9}, a_{3}=-\frac{3}{4}\,a_{1}a_{9}^2, a_{4}=a_{4}, a_{5}=a_{5}, \\&a_{6}=-\varepsilon a_{1}a_{9}, a_{7}=-\frac{3}{4}\,a_{5}a_{9}^2, a_{8}=a_{8}, a_{9}=a_{9}, a_{10}=0, \\&a_{11}=-\frac{1}{4}\,a_{9}^3, a_{12}=a_{12}, a_{13}=\frac{4\,a_{1}^4+8\,a_{1}^2a_{5}^2 +4\,a_{5}^4+a_{9}^4}{4a_{9}^2(a_{1}^2+a_{5}^2)}\Bigg \}, \end{aligned}$$

where \(\varepsilon =\pm 1\). Actually, these three sets of solutions contain six cases corresponding to different values of \(\varepsilon \).

Appendix B

Case 1

$$\begin{aligned} \Bigg \{&a_{1}=a_{1}, a_{2}=\frac{a_{5}k_{1}^2+a_{1}k_{2}}{k_{1}}, a_{3}=-\frac{3}{4}\,\frac{a_{1}k_{1}^4-2\,a_{5}k_{1}^2k_{2}-a_{1}k_{2}^2}{k_{1}^2}, a_{4}=a_{4}, a_{5}=a_{5}, \\&a_{6}=-\frac{a_{1}k_{1}^2-a_{5}k_{2}}{k_{1}}, a_{7}=-\frac{3}{4}\,\frac{a_{5}k_{1}^4+2\,a_{1}k_{1}^2k_{2}-a_{5}k_{2}^2}{k_{1}^2},\\&a_{8}=a_{8}, a_{9}=\frac{a_{1}^2+a_{5}^2}{k_{1}^2},k_{1}=k_{1}, k_{2}=k_{2}, k_{3}=-\frac{k_{1}^4-3\,k_{2}^2}{4k_{1}}\Bigg \}, \end{aligned}$$

Case 2

$$\begin{aligned} \Bigg \{&a_{1}=0, a_{2}=\varepsilon a_{5}k_{1}, a_{3}=\varepsilon \frac{3}{2}\,a_{6}k_{1}, a_{4}=a_{4}, a_{5}=a_{5}, a_{6}=a_{6},\\&a_{7}=-\frac{3}{4}\,\frac{a_{5}^2k_{1}^2-a_{6}^2}{a_{5}}, a_{8}=a_{8}, a_{9}=\frac{a_{5}^2}{k_{1}^2}, \\&k_{1}=k_{1}, k_{2}=\frac{a_{6}k_{1}}{a_{5}}, k_{3}=-\frac{k_{1}(a_{5}^2k_{1}^2-3\,a_{6}^2)}{4a_{5}^2}\Bigg \}, \end{aligned}$$

Case 3

$$\begin{aligned} \Bigg \{&a_{1}=a_{1}, a_{2}=\frac{-a_{5}k_{1}^2+a_{1}k_{2}}{k_{1}}, a_{3}=-\frac{3}{4}\,\frac{a_{1}k_{1}^4+2\,a_{5}k_{1}^2k_{2}-a_{1}k_{2}^2}{k_{1}^2}, a_{4}=a_{4}, a_{5}=a_{5},\\&a_{6}=\frac{a_{1}k_{1}^2+a_{5}k_{2}}{k_{1}}, a_{7}=\frac{3}{4}\,\frac{-a_{5}k_{1}^4+2\,a_{1}k_{1}^2k_{2}+a_{5}k_{2}^2}{k_{1}^2}, \\&a_{8}=a_{8}, a_{9}=\frac{a_{1}^2+a_{5}^2}{k_{1}^2},k_{1}=k_{1}, k_{2}=k_{2}, k_{3}=-\frac{k_{1}^4-3\,k_{2}^2}{4k_{1}}\Bigg \}, \end{aligned}$$

where \(\varepsilon =\pm 1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, SJ., Yin, YH., Ma, WX. et al. Abundant exact solutions and interaction phenomena of the (2 + 1)-dimensional YTSF equation. Anal.Math.Phys. 9, 2329–2344 (2019). https://doi.org/10.1007/s13324-019-00338-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-019-00338-2

Keywords

Navigation