Skip to main content
Log in

Effects of zonal flows on correlation between energy balance and energy conservation associated with nonlinear nonviscous atmospheric dynamics in a thin rotating spherical shell

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

The nonlinear Euler equations are used to model two-dimensional atmosphere dynamics in a thin rotating spherical shell. The energy balance is deduced on the basis of two classes of functorially independent invariant solutions associated with the model. It it shown that the energy balance is exactly the conservation law for one class of the solutions whereas the second class of invariant solutions provides and asymptotic convergence of the energy balance to the conservation law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aguiar, A.C., Read, P.L., Wordsworth, R.D., Salter, T., Yamazaki, Y.H.: A laboratory model of Saturn’s North Polar Hexagon. Icarus 206(2), 755–763 (2010)

    Article  Google Scholar 

  2. Ali, A., Kalisch, H.: On the formulation of mass, momentum and energy conservation in the KdV equation. Aca Appl. Math. 133, 113–131 (2014)

  3. Anderson, R.F., Ali, S., Brandtmiller, L.L., Nielsen, S.H.H., Fleisher, M.Q.: Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric \(CO_{2}\). Science 323, 1443–1448 (2006)

    Article  Google Scholar 

  4. Bachelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)

    Google Scholar 

  5. Balasuriya, S.: Vanishing viscosity in the barotropic \( \beta \)-plane. J. Math. Anal. Appl. 214, 128–150 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Belotserkovskii, O.M., Mingalev, I.V., Mingalev, O.V.: Formation of large-scale vortices in shear flows of the lower atmosphere of the earth in the region of tropical latitudes. Cosm. Res. 47(6), 466–479 (2009)

    Article  Google Scholar 

  7. Ben-Yu, G.: Spectral method for vorticity equations on spherical surface. Math. Comput. 64, 1067–1079 (1995)

    Article  Google Scholar 

  8. Blinova, E.N.: A hydrodynamical theory of pressure and temperature waves and of centres of atmospheric action. C.R. (Dokl.) Acad. Sci. USSR 39, 257–260 (1943)

    MathSciNet  MATH  Google Scholar 

  9. Blinova, E.N.: A method of solution of the nonlinear problem of atmospheric motions on a planetary scale. Dokl. Acad. Nauk USSR 110, 975–977 (1956)

    MATH  Google Scholar 

  10. Cenedese, C., Linden, P.F.: Cyclone and anticyclone formation in a rotating stratified fluid over a sloping bottom. J. Fluid Mech. 381, 199–223 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Flertcher, L.N., Irwin, P.G., Orton, G.S.: Temperature and composition of Saturn’s polar hot spots and hexagon. Science 319, 79–82 (2008)

    Article  Google Scholar 

  12. Furnier, A., Bunger, H., Hollerbach, R., Vilotte, I.: Application of the spectral-element method to the axisymetric Navier–Stokes equations. Geophys. J. Int. 156, 682–700 (2004)

    Article  Google Scholar 

  13. Golovkin, H.: Vanishing viscosity in Cauchy’s problem for hydromechanics equation. Proc. Steklov Inst. Math. 92, 33–53 (1966)

    MathSciNet  MATH  Google Scholar 

  14. Herrmann, E.: The motions of the atmosphere and especially its waves. Bull. Am. Math. Soc. 2(9), 285–296 (1896)

    Article  MathSciNet  Google Scholar 

  15. Hsieh, P.A.: Application of modflow for oil reservoir simulation during the Deepwater Horizon crisis. Ground Water 49(3), 319–323 (2011)

    Article  Google Scholar 

  16. Ibragimov, R.N.: Nonlinear viscous fluid patterns in a thin rotating spherical domain and applications. Phys. Fluids 23, 123102 (2011)

    Article  MATH  Google Scholar 

  17. Ibragimov, R.N., Dameron, M.: Spinning phenomena and energetics of spherically pulsating patterns in stratified fluids. Phys. Scr. 84, 015402 (2011)

    Article  MATH  Google Scholar 

  18. Ibragimov, N.H., Ibragimov, R.N.: Intergarion by quadratures of the nonlinear Euler equations modeling atmospheric flows in a thin rotating spherical shell. Phys. Lett. A 375, 3858 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ibragimov, N.H., Ibragimov, R.N.: Applications of Lie Group Analysis in Geophysical Fluid Dynamics. Series on Complexity, Nonlinearity and Chaos, vol. 2. World Scientific Publishers (2011) (ISBN: 978-981-4340-46-5)

  20. Ibragimov, R.N., Pelinovsky, D.E.: Effects of rotation on stability of viscous stationary flows on a spherical surface. Phys. Fluids 22, 126602 (2010)

    Article  MATH  Google Scholar 

  21. Ibragimov, R.N., Jefferson, G., Carminati, J.: Invariant and approximately invariant solutions associated with nonlinear zonally averaged atmospheric motion in a thin rotating atmospheric shell. Anal. Math. Phys. 3, 375–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ibragimov, R.N., Pelinovsky, D.E.: Incompressible viscous fluid flows in a thin spherical shell. J. Math. Fluid Mech. 11, 60–90 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ibragimov, R.N.: Shallow water theory and solutions of the free boundary problem on the atmospheric motion around the Earth. Phys. Scr. 61, 391–395 (2000)

    Article  MATH  Google Scholar 

  24. Ibragimov, N.H.: A new conservation theorem. J. Math. Anal. Appl. 333(1), 311–328 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ibragimov, N.H.: Transformation Groups Applied to Mathematical Physics. Nauka, Moscow (1983) (English. transl, Reidel, Dordrecht (1985))

  26. Iftimie, D., Raugel, G.: Some results on the Navier–Stokes equations in thin 3D domains. J. Differ. Equ. 169, 281–331 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Karczewska, A., Rozmej, P., Infeld, E.: Energy invariant for shallow-water waves and the Korteweg–de Vries equation: doubts about the invariance of energy. Phys. Rev. E 92, 053202 (2015)

    Article  MathSciNet  Google Scholar 

  28. Lamb, H.: Hydrodynamics, 5th edn. Cambridge University Press, Cambridge (1924)

    MATH  Google Scholar 

  29. Lions, J.L., Teman, R., Wang, S.: On the equations of the large-scale ocean. Nonlinearity 5, 1007–1053 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lions, J.L., Teman, R., Wang, S.: New formulations of the primitive equations of atmosphere and applications. Nonlinearity 5, 237–288 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Noether, E.: Invariante Variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. 1918, 235–257 (1918)

  32. Ovsyannikov, L.V.: Group Analysis of Differential Equations. Nauka, Moscow (1978) (English transl., ed. W.F. Ames, Academic Press, New York (1982))

  33. Shindell, D.T., Schmidt, G.A.: Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Res. Lett. 31, L18209 (2004)

    Article  Google Scholar 

  34. Shen, J.: On pressure stabilization method and projection method for unsteady Navier–Stokes equations. In: Advances in Computer Methods for Partial Differential Equations, pp. 658–662. IMACS, New Brunswick (1992)

  35. Summerhayes, C.P., Thorpe, S.A.: Oceanography. An Illustrative Guide. Willey, New York (1996)

    Google Scholar 

  36. Swarztrauber, P.N.: Shallow water flow on the sphere. Mon. Weather Rev. 132, 3010–3018 (2004)

    Article  Google Scholar 

  37. Swarztrauber, P.N.: The approximation of vector functions and their derivatives on the sphere. SIAM J. Numer. Anal. 18, 181–210 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  38. Temam, R., Ziane, M.: Navier–Stokes equations in thin spherical domains. Contemp. Math. 209, 281–314 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Toggweiler, J.R., Russel, J.L.: Ocean circulation on a warming climate. Nature 451, 286–288 (2008)

    Article  Google Scholar 

  40. Vassada, A.R., Horst, S.M., Kennedy, M.R., Ingersoll, A.P.: Cassini imaging of Saturn: Southern hemisphere winds and vorticities. J. Geophys. Res. 111, 5004–5017 (2006)

    Article  Google Scholar 

  41. Weijer, W., Vivier, F., Gille, S.T., Dijkstra, H.: Multiple oscillatory modes of the Argentine Basin. Part II: The spectral origin of basin modes. J. Phys. Oceanogr. 37, 2869–2881 (2007)

    Article  Google Scholar 

  42. Williamson, D.: A standard test for numerical approximation to the shallow water equations in spherical geometry. J. Comput. Phys. 102, 211–224 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranis N. Ibragimov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibragimov, R.N. Effects of zonal flows on correlation between energy balance and energy conservation associated with nonlinear nonviscous atmospheric dynamics in a thin rotating spherical shell . Anal.Math.Phys. 8, 11–24 (2018). https://doi.org/10.1007/s13324-016-0158-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-016-0158-0

Keywords

Navigation