Skip to main content
Log in

A finite class of q-orthogonal polynomials corresponding to inverse gamma distribution

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, a class of finite q-orthogonal polynomials is studied whose weight function corresponds to the inverse gamma distribution as \(q \rightarrow 1\). Via Sturm–Liouville theory in q-difference spaces, the orthogonality of this class is proved and its norm square value is computed. Also, its general properties such as q-weight function, q-difference equation and the basic hypergeometric representation are recovered in the continuous case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nikiforov, A.F., Uvarov, V.B.: Polynomial solutions of hypergeometric type difference equations and their classification. Integral Transform. Spec. Funct. 1(3), 223–249 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Masjed-Jamei, M.: Three finite classes of hypergeometric orthogonal polynomials and their application in functions approximation. Integral Transform. Spec. Funct. 13(2), 169–191 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Jirari, A.: Second-order Sturm–Liouville difference equations and orthogonal polynomials. Mem. Am. Math. Soc. 542, 138 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Nikiforov, A.F., Suslov, S.K., Uvarov, V.B.: Classical Orthogonal Polynomials of a Discrete Variable. Springer Series in Computational Physics. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  5. Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and Their \(q\)-Analogues. Springer Monographs in Mathematics. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  6. Koornwinder, T.H.: Compact quantum groups and \(q\)-special functions. In: Baldoni, V., Picardello, M.A. (eds.) Representations of Lie Groups and Quantum Groups (Trento, 199), vol. 311 of Pitman Research Notes in Mathematics Series, pp. 46–128. Longman Sci. Tech., Harlow (1994)

  7. Koornwinder, T.H.: Orthogonal polynomials in connection with quantum groups. In: Nevai, P. (ed.) Orthogonal polynomials (Columbus, OH, 1989), vol. 294 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp. 257–292. Kluwer Academic Publishers, Dordrecht (1990)

  8. Vilenkin, N.J., Klimyk, A.U.: Representation of Lie groups and special functions. Vol. 3, volume 75 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht (1992)

    Book  MATH  Google Scholar 

  9. Álvarez Nodarse, R., Medem, J.C.: The \(q\)-classical polynomials and the \(q\)-Askey and Nikiforov–Uvarov tableaus. J. Comput. Appl. Math. 135(1), 197–223 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Álvarez Nodarse, R., Atakishiyev, N.M., Costas-Santos, R.S.: Factorization of the hypergeometric-type difference equation on non-uniform lattices: dynamical algebra. J. Phys. A 38(1), 153–174 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Atakishiyev, N.M., Klimyk, A.U., Wolf, K.B.: A discrete quantum model of the harmonic oscillator. J. Phys. A 41(8), 085201 (2008). (14)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grünbaum, F.A.: Discrete models of the harmonic oscillator and a discrete analogue of Gauss’ hypergeometric equation. Ramanujan J. 5(3), 263–270 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gasper, G., Rahman, M.: Basic Hypergeometric Series, vol. 96 of Encyclopedia of Mathematics and its Applications, 2nd edn. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  14. Thomae, J.: Beitrage zur theorie der durch die heinesche reihe. J. Reine Angew. Math. 70, 258–281 (1869)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jackson, F.: On \(q\)-definite integrals. Q. J. Pure Appl. Math. 41, 193–203 (1910)

    MATH  Google Scholar 

  16. Ismail, M.E.H.: Classical and Quantum orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, vol. 98. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  17. Area, I., Masjed-Jamei, M.: A symmetric generalization of Sturm–Liouville problems in \(q\)-difference spaces. Bull. Sci. Math. 138(6), 693–704 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kac, V., Cheung, P.: Quantum Calculus. Springer, New York (2002). (Universitext)

    Book  MATH  Google Scholar 

  19. Álvarez Nodarse, R., Sevinik Adigüzel, R., Taşeli, H.: On the orthogonality of \(q\)-classical polynomials of the Hahn class. SIGMA 8, 042 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Sevinik Adigüzel, R.: On the \(q\)-analysis of \(q\)-hypergeometric difference equation, Doctoral dissertation, Middle East Technical University, Ankara, Turkey (2010)

  21. Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach Science Publishers, New York (1978)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the reviewer for helpful suggestions and comments as well as for bringing out to our attention the Reference [9].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Area.

Additional information

The work of I. Area has been partially supported by the Ministerio de Ciencia e Innovación of Spain under grant MTM2012–38794–C02–01, co-financed by the European Community fund FEDER.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleyman, F., Masjed-Jamei, M. & Area, I. A finite class of q-orthogonal polynomials corresponding to inverse gamma distribution. Anal.Math.Phys. 7, 479–492 (2017). https://doi.org/10.1007/s13324-016-0150-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-016-0150-8

Keywords

Mathematics Subject Classification

Navigation