Skip to main content
Log in

Periodic solutions for Hamiltonian equation associated with Gaussian potential

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper is focused on the approximate procedures for the periodic solutions of the nonlinear Hamilton equation with Gaussian potential. We propose a modified rational harmonic balance method to treat conservative nonlinear equations without the requirements on small perturbation or small parameter. The different approximating orders of this scheme illustrate the excellent agreement of the approximate frequencies with the exact ones. All the numerical results reveal that this effective method can be widely applied to many other truly nonlinear differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Beals, R., Gaveau, B., Greiner, P.C.: Complex Hamiltonian mechanics and parametrices for subelliptic Laplacians, I,II,III, Bull. Sci. Math. 121, 1–36, 97–149, 195–259 (1997)

  2. Beléndez, A., Gimeno, E., Álvarez, M.L., Yebra, M.S., Méndez, D.I.: Analytical approximate solutions for conservative nonlinear oscillators by modified rational harmonic balance method. Int. J. Comput. Math. 87, 1497–1511 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beléndez, A., Gimeno, E., Álvarez, M.L., Méndez, D.I., Hernández, A.: Application of a modified rational harmonic balance method for a class of strongly nonlinear oscillators. Phys. Lett. A 372, 6047–6052 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boonchui, S., Hutem, A.: Excited-state energy eigenvalue and wave-function evaluation of the Gaussian symmetric double-well potential problem via numerical shooting method 1. J. Math. Chem. 50, 1582–1597 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boonchui, S., Hutem, A.: Excited-state energy eigenvalue and wave-function evaluation of the Gaussian symmetric double-well potential problem via numerical shooting method 2. J. Math. Chem. 50, 2103–2119 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Calin, O., Chang, D.C., Furutani, K., Iwasaki, C.: Heat Kernels for elliptic and sub-elliptic operators: methods and techniques. Birkhäuser, Boston (2010)

    MATH  Google Scholar 

  7. Calin, O., Chang, D.C., Tie, J.: Fundamental solutions for Hermite and subelliptic operators. J. Anal. Math. 100, 223–248 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang, D.C., Feng, S.Y.: Geometric analysis on generalized hermite operators. Adv. Appl. Math. 47, 710–771 (2011)

  9. Chang, D.C., Feng, S.Y.: Periodic solutions for Hamiltonian systems associated with nonlinear oscillators. J. Nonlinear Convex Anal. 17, 621–637 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Cveticanin, L.: Homotopy-perturbation method for pure nonlinear differential equation. Chaos Solitons Fractals 30, 1221–1230 (2006)

    Article  MATH  Google Scholar 

  11. Feng, S.Y.: Fundamental Solutions on Partial Differential Operators of Second Order with Application to Matrix Riccati Equations. Taiwanese J. Math. 17, 379–406 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gharaati, A., Khordad, R.: A new confinement potential in spherical quantum dots: Modified Gaussian potential. Super. Microstruct. 48, 276–287 (2010)

    Article  Google Scholar 

  13. He, J.H.: Application of parameter-expanding method to strongly nonlinear oscillators. Int. J. Nonlinear Sci. Numer. Simul. 8, 121–124 (2007)

    Article  Google Scholar 

  14. He, J.H.: Homotopy perturbation method: a new nonlinear analytical technique. Appl. Math. Comput. 135, 73–79 (2003)

    MathSciNet  MATH  Google Scholar 

  15. He, J.H.: Modified Lindstedt-Poincaré methods for some non-linear oscillations. Part I: expansion of a constant. Int. J. Nonlinear Mech. 37, 309–314 (2002)

    Article  MATH  Google Scholar 

  16. He, J.H.: Modified Lindstedt-Poincaré methods for some non-linear oscillations. Part III: double series expansion. Int. J. Nonlinear Sci. Numer. Simul. 2, 317–320 (2001)

    MATH  Google Scholar 

  17. He, J.H.: A new perturbation technique which is also valid for large parameters. J. Sound Vib. 229, 1257–1263 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, J.H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178, 257–262 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, Y., Lü, R.D., Liu, G.J., Hei, E.C.: Physical chemistry, 5th edn. Higher Education Press, Beijing (2007)

    Google Scholar 

  20. Katok, A.B., Hasselblatt, B.: Introduction to the modern theory of dynamical systems. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  21. Liao, S., Tan, Y.: Ageneral approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119, 297–354 (2007)

    Article  MathSciNet  Google Scholar 

  22. Liao, S.J.: Beyond perturbation: introduction to homotopy analysis method. Chapman & Hall, Boca Raton (2003)

    Book  Google Scholar 

  23. Liao, S.J.: On the proposed homotopy analysis technique for nonlinear problems and its applications. Ph.D. dissertation, Shanghai Jiao Tong University, China (1992)

  24. Lin, Z.S.: Nonlinear mechanics and atmospheric sciences. Nanjing University Press, China (1993)

    Google Scholar 

  25. Mickens, R.E.: Oscillations in planar dynamics systems. World Scientific, Singapore (1996)

    Book  MATH  Google Scholar 

  26. Mickens, R.E., Semwogerere, D.: Fourier analysis of a rational harmonic balance approximation for periodic solutions. J. Sound Vib. 195, 528–530 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mickens, R.E.: A generalization method of harmonic-balance. J. Sound Vib. 111, 515–518 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Özis, T., Yildirim, A.: Generating the periodic solutions for forcing van der Pol oscillators by the iteration perturbation method. Nonlin. Anal. 10, 1984–1989 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Özis, T., Yildirim, A.: A comparative study of He’s homotopy perturbation method for determining frequency-amplitude relation of a nonlinear oscillator with discontinuities. Int. J. Nonlin. Sci. Numer. Simul. 8, 243–248 (2007)

    Article  Google Scholar 

  30. Ramos, J.I.: On Lindstedt-Poincaré techniques for the quintic Duffing equation. Appl. Math. Comput. 193, 303–310 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Schmidt, P.P.: Harmonic oscillator basis functions and Gaussian model potentials for the analysis of anharmonic vibrations. Int. J. Quan. Chem. 90, 202–226 (2002)

    Article  Google Scholar 

  32. Stoer, J., Bulirsch, R.: Introduction to numerical analysis, 3rd edn. Springer-Verlag, Berlin (2002)

    Book  MATH  Google Scholar 

  33. Touya, C., Dean, D.S.: Dynamical transition for a particle in a squared Gaussian potential. J. Phys. A 40, 919–934 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, S.Q., He, J.H.: Nonlinear oscillator with discontinuity by parameter-expansion method, Chaos. Solitons Fractals 35, 688–691 (2008)

    Article  MATH  Google Scholar 

  35. Wiggins, S.W.: Introduction to applied nonlinear dynamical systems and chaos. Springer-Verlag, New York (1990)

    Book  MATH  Google Scholar 

  36. Xu, L.: He’s parameter-expanding methods for strongly nonlinear oscillators. J. Comput. Appl. Math. 207, 148–154 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yildirim, A.: He’s homotopy perturbation method for nonlinear differential-difference equations. Int. J. Comput. Math. 87, 992–996 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Younesian, D., Kalami-Yazdi, M., Askari, H., Saadatnia, Z.: Frequency analysis of higher-order Duffing oscillator using homotopy and iteration-perturbation techniques. In: 18th annual international conference on mechanical engineering-ISME 2010, Sharif University of Technology, Tehran, Iran

  39. Zhang, X., Huang, R., Liu, X.Y.: Introduction to microelectronics. Peking University Press, Beijing (2000)

    Google Scholar 

Download references

Acknowledgments

We wish to thank the referee for his/her careful reading of the manuscript and for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Ya Feng.

Ethics declarations

Funding

The first author is partially supported by an NSF grant DMS-1408839 and a McDevitt Endowment Fund at Georgetown University. The second author is partially supported by the National Natural Science Foundation of China (Grant No. 11426109 and No. 11501203), as well as the Fundamental Research Funds for the Central Universities of China (Grant No. 22A201514035).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, DC., Feng, SY. Periodic solutions for Hamiltonian equation associated with Gaussian potential. Anal.Math.Phys. 7, 459–477 (2017). https://doi.org/10.1007/s13324-016-0149-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-016-0149-1

Keywords

Mathematics Subject Classification

Navigation