Skip to main content
Log in

A modification of \(\mathsf {WKB}\) method for fractional differential operators of Schrödinger’s type

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we were concerned with the description of the singularly perturbed differential equations within the scope of fractional calculus. However, we shall note that one of the main methods used to solve these problems is the so-called \(\mathsf {WKB}\) method. We should mention that this was not achievable via the existing fractional derivative definitions, because they do not obey the chain rule. In order to accommodate the \(\mathsf {WKB}\) to the scope of fractional derivative, we proposed a relatively new derivative called the local fractional derivative. By use of properties of local fractional derivative, we extend the \(\mathsf {WKB}\) method in the scope of the fractional differential equation. By means of this extension, the \(\mathsf {WKB}\) analysis based on the Borel resummation, for fractional differential operators of \(\mathsf {WKB}\) type are investigated. The convergence and the Mittag-Leffler stability of the proposed approach is proven. The obtained results are in excellent agreement with the existing ones in open literature and it is shown that the present approach is very effective and accurate. Furthermore, we are mainly interested to construct the solution of fractional Schrödinger equation in the Mittag-Leffler form and how it leads naturally to this semi-classical approximation namely modified \(\mathsf {WKB}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  2. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, North-Holland (2006)

    MATH  Google Scholar 

  3. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods. World Scientific, Singapore (2012)

    Book  MATH  Google Scholar 

  4. Sayevand, K., Pichaghchi, K.: Successive approximation: a survey on stable manifold of fractional differential systems. Fract. Calculus Appl. Anal. 18(3), 621–641 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Sayevand, K.: Analytical treatment of Volterra integro-differential equations of fractional order. Appl. Math. Model. 39(15), 4330–4336 (2015)

    Article  MathSciNet  Google Scholar 

  6. Voros, A.: The return of the quartic oscillator. The complex WKB method. Ann. Inst. H. Poincaré A 39, 211–338 (1983)

  7. Voros, A.: From exact-WKB towards singular quantum perturbation theory. 40, 973–990 (2004)

  8. Iwaki, K., Nakanishi, T.: Exact WKB analysis and cluster algebras. arXiv:1401.7094v4 [math.CA] (2014)

  9. Nayefeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1993)

    Google Scholar 

  10. Rabei, E.M.: Quantization of Christ-Lee model using the WKB approximation. Int. J. Theor. Phys. 42(9), 20–97 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rabei, E.M., Nawafleh, K.I., Ghassib, H.B.: Quantization of constrained systems using the WKB approximation. Phys. Rev. A 66, 024–101 (2002)

    Article  MATH  Google Scholar 

  12. Rabei, E.M., Nawafleh, K.I., Ghassib, H.B.: Quantization of reparameterizatized systems using the WKB method. Tur. J. Phys. 29(1), 151–162 (2005)

    MATH  Google Scholar 

  13. Rabei, E.M., Hassan, E.H., Ghassib, H.B.: Quantization of second-order constrained Lagrangians systems using the WKB approximation. Int. J. Geom. Methods Mod. Phys. 2(3), 485–504 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rabei, E.M., Hassan, E.H., Ghassib, H.B.: Quantization of higher-order constrained Lagrangian systems using the WKB approximation. Int. J. Theor. Phys. 43(11), 22–85 (2004)

    MathSciNet  Google Scholar 

  15. Rabei, E.M., Altarazi, I.M.A., Muslih, S.I., Baleanu, D.: Fractional WKB approximation. Nonlinear Dyn. 57(1–2), 171–175 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rabei, E.M., Muslih, S.I., Baleanu, D.: Quantization of fractional systems using WKB approximation. Commun. Nonlinear Sci. Numer. Simulat. 15, 807–811 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, X.J.: Advanced Local Fractional Calculus and its Applications. World Science Publisher, New York (2012)

    Google Scholar 

  18. Yang, X.J.: Local fractional integral transforms. Prog. Nonlinear Sci. 4, 1–225 (2011)

    Google Scholar 

  19. Hu, M.S., Baleanu, D., Yang, X.J.: One-phase problems for discontinuous heat transfer in fractal media. Math. Probl. Eng. 2013, 358–473 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Yang, X.J.: A short note on local fractional calculus of function of one variable. J. Appl. Libr. Inf. Sci. 1(1), 1–13 (2012)

    MathSciNet  Google Scholar 

  21. Zhong, W.P., Gao, F., Shen, X.M.: Applications of Yang-Fourier transform to local fractional equations with local fractional derivative and local fractional integral. Adv. Math. Res. 461, 306–310 (2012)

    Article  Google Scholar 

  22. Yang, X.J.: Local fractional variational iteration method and its algorithms. Adv. Comput. Math. Appl. 1(3), 139–145 (2012)

    Google Scholar 

  23. He, J.H.: A tutorial review on fractal spacetime and fractional calculus. Int. J. Theor. Phys. 53, 3698–3718 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kolwankar, K.M.: Local fractional calculus: a review. arXiv preprint arXiv:1307.0739 (2013)

  25. Babakhani, A., Daftardar-Gejji, V.: On calculus of local fractional derivatives. J. Math. Anal. Appl. 270, 66–79 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Adda, F.B., Cresson, J.: About non-differentiable functions. J. Math. Anal. Appl. 263, 721–737 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Aoki, T.: Calcul exponentiel des operateurs microdifferentiels dordre inni. I. Ann. Inst. Fourier (Grenoble) 33, 227–250 (1983)

    Article  Google Scholar 

  28. Aoki, T.: Symbols and formal symbols of pseudodifferential operators. Adv. Stud. Pure Math. 4, 181–208 (1984)

    MathSciNet  MATH  Google Scholar 

  29. Aoki, T.: Calcul exponentiel des operateurs microdifferentiels dordre inni, II. Ann. Inst. Fourier (Grenoble) 36, 143–165 (1986)

    Article  MathSciNet  Google Scholar 

  30. Aoki, T., Kawai, T., Koike, T., Takei, Y.: On the exact WKB analysis of operators admitting innitely many phases. Adv. Math. 181, 165–189 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Guillemin, V.W., Kashiwara, M., Kawai, T.: Seminar on micro-local analysis. Princeton University Press and University of Tokyo Press, Princeton, New Jeresy (1979)

    MATH  Google Scholar 

  32. Aoki, T.: Quantized contact transformations and pseudodifferential operators of innite-order. Publ. Res. Inst. Math. Sci. Kyoto Univ. 26, 505–519 (1990)

    Article  MATH  Google Scholar 

  33. Malgrange, B.: L’involutivite des caracteristiques des systemes differentiels et micro-differentiels. Sem. Bourbaki 522, 277–289 (1977/78)

  34. Jarad, F., Abdeljawad, T., Gundogdu, E., Baleanu, D.: On the Mittag-Leffler stability of q-fractional nonlinear dynamical system. Proc. Rom. Acad. Ser. A 12, 309–314 (2011)

    MathSciNet  Google Scholar 

  35. Momani, S., Hadid, S.: Lyapunov stability solutions of fractional integro differential equations. Int. J. Math. Math. Sci. 47, 2503–2507 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sayevand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayevand, K., Pichaghchi, K. A modification of \(\mathsf {WKB}\) method for fractional differential operators of Schrödinger’s type. Anal.Math.Phys. 7, 291–318 (2017). https://doi.org/10.1007/s13324-016-0143-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-016-0143-7

Keywords

Mathematics Subject Classification

Navigation