Skip to main content
Log in

Saliency Detection for Stereoscopic 3D Images in the Quaternion Frequency Domain

  • 3DR Express
  • Published:
3D Research

Abstract

Recent studies have shown that a remarkable distinction exists between human binocular and monocular viewing behaviors. Compared with two-dimensional (2D) saliency detection models, stereoscopic three-dimensional (S3D) image saliency detection is a more challenging task. In this paper, we propose a saliency detection model for S3D images. The final saliency map of this model is constructed from the local quaternion Fourier transform (QFT) sparse feature and global QFT log-Gabor feature. More specifically, the local QFT feature measures the saliency map of an S3D image by analyzing the location of a similar patch. The similar patch is chosen using a sparse representation method. The global saliency map is generated by applying the wake edge-enhanced gradient QFT map through a band-pass filter. The results of experiments on two public datasets show that the proposed model outperforms existing computational saliency models for estimating S3D image saliency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254–1259.

    Article  Google Scholar 

  2. Han, S., & Vasconcelos, N. (2010). Biologically plausible saliency mechanisms improve feedforward object recognition. Vision Research, 50(22), 2295–2307.

    Article  Google Scholar 

  3. Felzenszwalb, P., McAllester, D., & Ramanan, D. (2008). A discriminatively trained, multiscale, deformable part model. In IEEE international conference on computer vision and pattern recognition, (pp. 1–8).

  4. Liu, Y., Yang, J., Meng, Q., Lv, Z., et al. (2016). Stereoscopic image quality assessment method based on binocular combination saliency model. Signal Processing, 125, 237–248.

    Article  Google Scholar 

  5. Jiang, Q., Shao, F., Jiang, G., et al. (2015). A depth perception and visual comfort guided computational model for stereoscopic 3D visual saliency. Signal Processing: Image Communication, 38, 57–69.

    Google Scholar 

  6. Shafieyan, F., Karimi, N., Mirmahboub, B., et al. (2017). Image retargeting using depth assisted saliency map. Signal Processing: Image Communication, 50, 34–43.

    Google Scholar 

  7. Lammar, M., Mitrea, M., Hasnaoui, M., et al. (2017). MPEG-4 AVC stream-based saliency detection. Application to robust watermarking. Signal Processing: Image Communication, 60, 116–130.

    Google Scholar 

  8. Srivastava, S., Mukherjee, P., & Lall, B. (2016). Adaptive image compression using saliency and KAZE features. In IEEE international conference on signal processing and communications (SPCOM), (pp. 1–5).

  9. Wang, A., & Wang, M. (2017). RGB-D salient object detection via minimum barrier distance transform and saliency fusion. IEEE Signal Processing Letters, 24(5), 663–667.

    Article  Google Scholar 

  10. Wang, J., Da Silva, M. P., Le Callet, P., et al. (2013). Computational model of stereoscopic 3D visual saliency. IEEE Transactions on Image Processing, 22(6), 2151–2165.

    Article  MathSciNet  MATH  Google Scholar 

  11. Kanan, C., Tong, M. H., Zhang, L., et al. (2009). SUN: Top-down saliency using natural statistics. Visual Cognition, 17(6–7), 979–1003.

    Article  Google Scholar 

  12. Harel, J., Koch, C., Perona, P. (2006). Graph-based visual saliency. In Proceedings of advances in neural information processing systems (NIPS), (pp. 545–552).

  13. Hou, X., & Zhang, L. (2007). Saliency detection: A spectral residual approach. In Computer vision and pattern recognition, (pp. 1–8).

  14. Imamoglu, N., Lin, W., & Fang, Y. (2013). A saliency detection model using low-level features based on wavelet transform. IEEE Transactions on Multimedia, 15(1), 96–105.

    Article  Google Scholar 

  15. Zhang, L., Gu, Z., & Li, H. (2013). SDSP: A novel saliency detection method by combining simple priors. In 20th IEEE international conference on image processing (ICIP), (pp. 3093–3096).

  16. Fang, Y., Lin, W., Lee, B. S., et al. (2012). Bottom-up saliency detection model based on human visual sensitivity and amplitude spectrum. IEEE Transactions on Multimedia, 14(1), 187–198.

    Article  Google Scholar 

  17. Zhang, L., Li, A., & Zhang, Z. (2016). Global and local saliency analysis for the extraction of residential areas in high-spatial-resolution remote sensing image. IEEE Transactions on Geoscience and Remote Sensing, 54(7), 3750–3763.

    Article  Google Scholar 

  18. Fang, Y., Wang, J., Narwaria, M., et al. (2014). Saliency detection for stereoscopic images. IEEE Transactions on Image Processing, 23(6), 2625–2636.

    Article  MathSciNet  MATH  Google Scholar 

  19. Qi, F., Zhao, D., Liu, S., et al. (2017). 3D visual saliency detection model with generated disparity map. Multimedia Tools and Applications, 76(2), 3087–3103.

    Article  Google Scholar 

  20. Wang, J., Da Silva, M. P., et al. (2013). Computational model of stereoscopic 3D visual saliency. IEEE Transactions on Image Processing, 22(6), 2151–2165.

    Article  MathSciNet  MATH  Google Scholar 

  21. Ju, R., Liu, Y., Ren, T., et al. (2015). Depth-aware salient object detection using anisotropic center-surround difference. Signal Processing: Image Communication, 38, 115–126.

    Google Scholar 

  22. Wang, A., & Wang, M. (2017). RGB-D salient object detection via minimum barrier distance transform and saliency fusion. IEEE Signal Processing Letters, 24(5), 663–667.

    Article  Google Scholar 

  23. Jiang, Q., Shao, F., & Jiang, G. (2015). A depth perception and visual comfort guided computational model for stereoscopic 3D visual saliency. Signal Processing: Image Communication, 38, 57–69.

    Google Scholar 

  24. Fang, Y., Lei, J., Li, J., et al. (2017). Learning visual saliency from human fixations for stereoscopic images. Neurocomputing., 266, 284–292.

    Article  Google Scholar 

  25. Ma, Y. C., & Hang, H. M. (2015). Learning-based saliency model with depth information. Journal of Vision, 15(6), 19.

    Article  Google Scholar 

  26. Song, H., Liu, Z., Du, H. et al. (2016). Depth-aware saliency detection using discriminative saliency fusion. In: IEEE international conference on acoustics, speech and signal processing (ICASSP), (pp. 3093–3096).

  27. Zhang, Q., Wang, X., Jiang, J. et al. (2016). Deep learning features inspired saliency detection of 3D images. In Pacific rim conference on multimedia, (pp. 580–589).

  28. Fang, Y., Chen, Z., Lin, W., et al. (2012). Saliency detection in the compressed domain for adaptive image retargeting. IEEE Transactions on Image Processing, 21(9), 3888–3901.

    Article  MathSciNet  MATH  Google Scholar 

  29. Fang, Y., Lin, W., Lee, B. S., et al. (2012). Bottom-up saliency detection model based on human visual sensitivity and amplitude spectrum. IEEE Transactions on Multimedia, 14(1), 187–198.

    Article  Google Scholar 

  30. Donoho, D. L. (2006). For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics, 59(6), 797–829.

    Article  MathSciNet  MATH  Google Scholar 

  31. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological), 267–288.

  32. Zhang, L., Zhang, L., Mou, X., et al. (2011). FSIM: A feature similarity index for image quality assessment. IEEE Transactions on Image Processing, 20(8), 2378–2386.

    Article  MathSciNet  MATH  Google Scholar 

  33. Judd, T., Ehinger, K., Durand, F., et al. (2009). Learning to predict where humans look. In 12th IEEE international conference on computer vision (ICCV), (pp. 2106–2113).

  34. Hamilton, W. R. (1848). XI. on quaternions; or on a new system of imaginaries in algebra. Philosophical Magazine Series 3, 25(163), 10–13.

    Google Scholar 

  35. Ell, T.A. (1993). Quaternion-Fourier transforms for analysis of two-dimensional linear time-invariant partial differential systems. In 32th IEEE conference on decision and control, (pp. 1830–1841).

  36. Sangwine, S. J. (1996). Fourier transforms of colour images using quaternion or hypercomplex, numbers. Electronics Letters, 32(21), 1979–1980.

    Article  Google Scholar 

  37. Ell, T. A., & Sangwine, S. J. (2007). Hypercomplex Fourier transforms of color images. IEEE Transactions on Image Processing, 16(1), 22–35.

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, Y., Zhou, Y., & Xu, L. (2009) Incremental sparse saliency detection. In 6th IEEE international conference on image processing (ICIP), (pp. 3093–3096).

  39. Lang, C., Nguyen, T.V., Katti, H. et al. (2012). Depth matters: Influence of depth cues on visual saliency. In European conference on computer vision (ECCV), (pp. 92–109).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61502429, 61505176), the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LY18F020012), the Zhejiang Open Foundation of the Most Important Subjects, and the China Postdoctoral Science Foundation (Grant No. 2015M581932).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wujie Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Zhou, W., Cen, G. et al. Saliency Detection for Stereoscopic 3D Images in the Quaternion Frequency Domain. 3D Res 9, 22 (2018). https://doi.org/10.1007/s13319-018-0169-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13319-018-0169-8

Keywords

Navigation