Skip to main content
Log in

Effect of Ti Doping to Maintain Structural Disorder in InOx-Based Thin-Film Transistors Fabricated by RF Magnetron Sputtering

  • 3DR Express
  • Published:
3D Research

Abstract

The effect of Ti doping in an indium oxide (InOx)-based semiconductor is investigated for the thin-film transistor (TFT) property and crystal structure of the film. InOx and Ti-doped InOx (InTiOx) films deposited by RF magnetron sputtering under the same O2 partial pressure conditions were systematically compared. The TFT behavior of the InOx showed higher conductivity than that of the InTiOx and was drastically changed to metallic conduction after annealing at 150 °C. Under the annealing conditions when the electrical transition to the metallic behavior occurred, the InOx film was crystallized. The X-ray diffraction analysis revealed that the shrinkage of the In2O3 unit cell is pronounced in the case of InOx films. Thus, Ti dopants may play the role as a suppressor for shrinkage of the unit cell, i.e. maintaining neighboring In–In distances, in addition to suppression of oxygen vacancies. The In–In distance, which is related to the overlapping of In 5s orbitals, is considered to be one of the key factor for which InOx-based materials are utilized as conducting films or semiconducting channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adurodija, F. O., Semple, L., & Brüning, R. (2006). Crystallization process and electro-optical properties of In2O3 and ITO thin films. Journal Materials Science, 41, 7096–7102.

    Article  Google Scholar 

  2. Aikawa, S., Darmawan, P., Yanagisawa, K., Nabatame, T., Abe, Y., & Tsukagoshi, K. (2013). Thin-film transistors fabricated by low-temperature process based on Ga- and Zn-free amorphous oxide semiconductor. Applied Physics Letters, 102, 102101–102104. doi:10.1063/1.4794903.

    Article  Google Scholar 

  3. Aikawa, S., Nabatame, T., & Tsukagoshi, K. (2013). Effects of dopants in InOx-based amorphous oxide semiconductors for thin-film transistor applications. Applied Physics Letters, 103, 172105. doi:10.1063/1.4822175.

    Article  Google Scholar 

  4. Aikawa, S., Mitoma, N., Kizu, T., Nabatame, T., & Tsukagoshi, K. (2015). Suppression of excess oxygen for environmentally stable amorphous In–Si–O thin-film transistors. Applied Physics Letters, 106, 192103. doi:10.1063/1.4921054.

    Article  Google Scholar 

  5. Barquinha, P., Pereira, L., Gonçalves, G., Martins, R., & Fortunato, E. (2009). Toward high-performance amorphous GIZO TFTs. Journal of the Electrochemical Society, 156, H161. doi:10.1149/1.3049819.

    Article  Google Scholar 

  6. Brese, N., & O’keeffe, M. (1991). Bond-valence parameters for solids. Acta Crystallographica Section B: Structural Science, 47, 192–197.

    Article  Google Scholar 

  7. Buchholz, D. B., et al. (2014). The structure and properties of amorphous indium oxide. Chemistry of Materials, 26, 5401–5411.

    Article  Google Scholar 

  8. Dhananjay, & Chu, C. W. (2007). Realization of In2O3 thin film transistors through reactive evaporation process. Applied Physics Letters, 91, 132111–132113.

    Article  Google Scholar 

  9. Fakhri, M., Johann, H., Görrn, P., & Riedl, T. (2012). Water as origin of hysteresis in zinc tin oxide thin-film transistors. ACS Applied Materials & Interfaces, 4, 4453–4456. doi:10.1021/am301308y.

    Article  Google Scholar 

  10. Fortunato, E., Barquinha, P., Pimentel, A., Pereira, L., Goncalves, G., & Martins, R. (2007). Amorphous IZO TTFTs with saturation mobilities exceeding 100 cm2/Vs physica status solidi. (RRL)-Rapid Research Letters, 1, R34–R36.

    Google Scholar 

  11. Fuchs, F., & Bechstedt, F. (2008). Indium-oxide polymorphs from first principles: Quasiparticle electronic states. Physical Review B, 77, 155107.

    Article  Google Scholar 

  12. Gonçalves, G., Barquinha, P., Pereira, L., Franco, N., Alves, E., Martins, R., et al. (2010). High mobility a-IGO films produced at room temperature and their application in TFTs. Electrochemical and Solid-State Letters, 13, H20–H22.

    Article  Google Scholar 

  13. Hennek, J. W., et al. (2013). Oxygen “Getter” effects on microstructure and carrier transport in low temperature combustion-processed a-InXZnO (X = Ga, Sc, Y, La) transistors. Journal of the American Chemical Society, 135, 10729–10741. doi:10.1021/ja403586x.

    Article  Google Scholar 

  14. Hosono, H., Kikuchi, N., Ueda, N., & Kawazoe, H. (1996). Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples. Journal of Non-Crystalline Solids, 198–200, 165–169. doi:10.1016/0022-3093(96)80019-6.

    Article  Google Scholar 

  15. Hsu, H.-H., Chang, C.-Y., Cheng, C.-H., Chiou, S.-H., & Huang, C.-H. (2014). High mobility bilayer metal–oxide thin film transistors using titanium-doped InGaZnO. IEEE Electron Device Letters, 35, 87–89.

    Article  Google Scholar 

  16. Jeong, H., Jeong, H. S., Kim, D. H., Jeong, C. Y., & Kwon, H. I. (2016). Effects of post-deposition thermal annealing temperature on electrical properties of ZnON thin-film transistors. IEEE Electron Device Letters, 37, 747–750. doi:10.1109/led.2016.2559523.

    Article  Google Scholar 

  17. Kamiya, T., Nomura, K., & Hosono, H. (2010). Present status of amorphous In–Ga–Zn–O thin-film transistors. Science and Technology of Advanced Materials, 11, 044305. doi:10.1088/1468-6996/11/4/044305.

    Article  Google Scholar 

  18. Kerkache, L., Layadi, A., Dogheche, E., & Remiens, D. (2005). Physical properties of RF sputtered ITO thin films and annealing effect. Journal of Physics D: Applied Physics, 39, 184.

    Article  Google Scholar 

  19. Kim, J.-I., Ji, K. H., Jang, M., Yang, H., Choi, R., & Jeong, J. K. (2011). Ti-doped indium tin oxide thin films for transparent field-effect transistors: Control of charge-carrier density and crystalline structure. ACS Applied Materials & Interfaces, 3, 2522–2528.

    Article  Google Scholar 

  20. Kim, J.-H., et al. (2012). Effects of Ti addition on sol-gel derived InO and InZnO thin film transistors. Current Applied Physics, 12(Supplement 1), e24–e28. doi:10.1016/j.cap.2011.07.043.

    Article  Google Scholar 

  21. Kim, W. J., Min, B.-K., Pradhan, D., & Sohn, Y. (2015). Crystal phase transformation and doping-induced blue emission of Eu-doped InOOH and cubic/corundum-type rhombohedral In2O3 nanowires. CrystEngComm, 17, 1189–1200. doi:10.1039/c4ce02111h.

    Article  Google Scholar 

  22. Kizu, T., et al. (2014). Low-temperature processable amorphous In–W–O thin-film transistors with high mobility and stability. Applied Physics Letters, 104, 152103. doi:10.1063/1.4871511.

    Article  Google Scholar 

  23. Kurishima, K., et al. (2016). Prospectively of carbon-doped indium-tungsten-oxide channel TFT for bias stress instability. ECS Transactions, 75, 149–156. doi:10.1149/07510.0149ecst.

    Article  Google Scholar 

  24. Lee, S., et al. (2011). Trap-limited and percolation conduction mechanisms in amorphous oxide semiconductor thin film transistors. Applied Physics Letters, 98, 203503–203508.

    Article  Google Scholar 

  25. Lin, M.-F., et al. (2015). Reduction of the interfacial trap density of indium-oxide thin film transistors by incorporation of hafnium and annealing process. AIP Advances. doi:10.1063/1.4905903.

    Google Scholar 

  26. Luo, Y.-R. (2007). BDEs of B(B ±)–, Al(Al ±)–, Ga(Ga ±)–,In(In ±)–, and Tl(Tl ±)–X bonds. In Comprehensive handbook of chemical bond energies. CRC Press, pp 1041–1086. doi:10.1201/9781420007282.ch23.

  27. Mitoma, N., et al. (2014). Stable amorphous In2O3-based thin-film transistors by incorporating SiO2 to suppress oxygen vacancies. Applied Physics Letters, 104, 102103. doi:10.1063/1.4868303.

    Article  Google Scholar 

  28. Mitoma, N., et al. (2015). Dopant selection for control of charge carrier density and mobility in amorphous indium oxide thin-film transistors: Comparison between Si- and W-dopants. Applied Physics Letters, 106, 042106. doi:10.1063/1.4907285.

    Article  Google Scholar 

  29. Mitoma, N., et al. (2016). Phase transitions from semiconductive amorphous to conductive polycrystalline in indium silicon oxide thin films. Applied Physics Letters, 109, 221903.

    Article  Google Scholar 

  30. Nayak, P. K., Hedhili, M. N., Cha, D., & Alshareef, H. N. (2013). High performance In2O3 thin film transistors using chemically derived aluminum oxide dielectric. Applied Physics Letters, 103, 033514–033518.

    Article  Google Scholar 

  31. Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., & Hosono, H. (2004). Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 432, 488–492. doi:10.1038/Nature03090.

    Article  Google Scholar 

  32. Orui, T., et al. (2015). Charge compensation by excess oxygen in amorphous In–Ga–Zn–O films deposited by pulsed laser deposition. Journal of Display Technology, 11, 518–522. doi:10.1109/jdt.2014.2358251.

    Article  Google Scholar 

  33. Park, J.-S., Kim, K., Park, Y.-G., Mo, Y.-G., Kim, H. D., & Jeong, J. K. (2009). Novel ZrInZnO Thin-film transistor with excellent stability. Advanced Materials, 21, 329–333. doi:10.1002/adma.200802246.

    Article  Google Scholar 

  34. Park, S., et al. (2013). Effects of operational and geometrical conditions upon photosensitivity of amorphous InZnO thin film transistors. Journal of Vacuum Science & Technology B, 31, 050605.

    Article  Google Scholar 

  35. Park, W.-T., Son, I., Park, H.-W., Chung, K.-B., Xu, Y., Lee, T., et al. (2015). Facile routes to improve performance of solution-processed amorphous metal oxide thin film transistors by water vapor annealing. ACS Applied Materials & Interfaces, 7, 13289–13294. doi:10.1021/acsami.5b04374.

    Article  Google Scholar 

  36. Qu, M., Chang, C.-H., Meng, T., Zhang, Q., Liu, P.-T., Shieh, H.-P.D. (2017). Stability study of indium tungsten oxide thin-film transistors annealed under various ambient conditions. Physica Status Solidi A. doi:10.1002/pssa.201600465.

    Google Scholar 

  37. Shigesato, Y., Takaki, S., & Haranoh, T. (1992). Electrical and structural properties of low resistivity tin-doped indium oxide films. Journal of Applied Physics, 71, 3356–3364.

    Article  Google Scholar 

  38. Song, P. K., Akao, H., Kamei, M., Shigesato, Y., & Yasui, I. (1999). Preparation and crystallization of tin-doped and undoped amorphous indium oxide films deposited by sputtering. Japanese Journal of Applied Physics, 38, 5224.

    Article  Google Scholar 

  39. Tang, H., et al. (2015). Effects of residual hydrogen in sputtering atmosphere on structures and properties of amorphous In–Ga–Zn–O thin films. Journal of Applied Physics, 118, 205703. doi:10.1063/1.4936552.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. K. Tsukagoshi and Dr. T. Kizu (National Institute for Materials Science, Japan), and Prof. T. Yamaguchi (Kogakuin University) for their fruitful discussions. SA acknowledges the Murata Science Foundation. A part of this work was financially supported by the Strategic Research Foundation Grant-aided Project for Private Universities matching fund subsidy from the Ministry of Education, Culture, Sports, Science and Technology of Japan. The TFTs were fabricated at the Functional Microstructured Surface Research Center at Kogakuin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Aikawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aikawa, S. Effect of Ti Doping to Maintain Structural Disorder in InOx-Based Thin-Film Transistors Fabricated by RF Magnetron Sputtering. 3D Res 8, 35 (2017). https://doi.org/10.1007/s13319-017-0147-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13319-017-0147-6

Keywords

Navigation