Skip to main content
Log in

Clinical Pharmacokinetics and Pharmacodynamics of Delafloxacin

  • Review Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Delafloxacin has recently received approval by the US Food and Drug Administration for the treatment of acute bacterial skin and skin structure infections. This article provides a balanced and comprehensive systematic critique of the literature in order to provide an up-to-date summary of its clinical pharmacology. Oral delafloxacin is rapidly absorbed and exhibits comparable exposure characteristics (300 mg intravenous versus 450 mg oral) between the two formulations, allowing easy transition from intravenous to oral therapy. The bioavailability is high (60–70%) and absorption is not affected by food intake, although further studies are required under clinically relevant conditions. Delafloxacin is primarily excreted renally (thus requiring renal dose adjustment in the setting of renal dysfunction), but also undergoes metabolism by uridine diphosphate-glucuronosyltransferase enzymes in the formation of a conjugated metabolite. Few drug-drug interaction studies have been identified, although more systematic characterizations in vitro and in vivo are warranted. Delafloxacin is a concentration-dependent bactericidal agent that has in vitro susceptibility for gram-positive (notably potent activity against methicillin-resistant Staphylococcus aureus), gram-negative, and anaerobic organisms. In addition to acute bacterial skin and skin structure infections, the clinical utility of delafloxacin has also been studied in community-acquired pneumonia, acute exacerbation of chronic bronchitis, and gonorrhea, with potentially promising findings. Given its mild side effect profile, including an apparent lack of association with clinically important QTc prolongation, delafloxacin is generally well tolerated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Markham A. Delafloxacin: first global approval. Drugs. 2017;77(13):1481–6. https://doi.org/10.1007/s40265-017-0790-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bassetti M, Pecori D, Cojutti P, Righi E, Pea F. Clinical and pharmacokinetic drug evaluation of delafloxacin for the treatment of acute bacterial skin and skin structure infections. Expert Opin Drug Metab Toxicol. 2017;13(11):1193–200. https://doi.org/10.1080/17425255.2017.1386654.

    Article  CAS  PubMed  Google Scholar 

  3. Saravolatz LD, Stein GE. Delafloxacin: a new anti-MRSA fluoroquinolone. Clin Infect Dis. 2018. https://doi.org/10.1093/cid/ciy600.

    Article  Google Scholar 

  4. Wu K, Yan Z. FDA: center for drug evaluation and research- 208610Orig1s000. 2016. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/208610Orig1s000,208611Orig1s000ClinPharmR.pdf. Accessed July 2 2018.

  5. Hoover R, Hunt T, Benedict M, Paulson SK, Lawrence L, Cammarata S, Sun E. Single and multiple ascending-dose studies of oral delafloxacin: effects of food, sex, and age. Clin Ther. 2016;38(1):39–52. https://doi.org/10.1016/j.clinthera.2015.10.016.

    Article  CAS  PubMed  Google Scholar 

  6. Hoover R, Hunt T, Benedict M, Paulson SK, Lawrence L, Cammarata S, Sun E. Safety, tolerability, and pharmacokinetic properties of intravenous delafloxacin after single and multiple doses in healthy volunteers. Clin Ther. 2016;38(1):53–65. https://doi.org/10.1016/j.clinthera.2015.11.019.

    Article  CAS  PubMed  Google Scholar 

  7. McEwen A, Lawrence L, Hoover R, Stevens L, Mair S, Ford G, Williams D, Wood S. Disposition, metabolism and mass balance of delafloxacin in healthy human volunteers following intravenous administration. Xenobiotica. 2015;45(12):1054–62. https://doi.org/10.3109/00498254.2015.1042946.

    Article  CAS  PubMed  Google Scholar 

  8. Hoover RK, Alcorn H, Lawrence L, Paulson SK, Quintas M, Cammarata SK. Delafloxacin pharmacokinetics in subjects with varying degrees of renal function. J Clin Pharmacol. 2018;58(4):514–21. https://doi.org/10.1002/jcph.1041.

    Article  CAS  PubMed  Google Scholar 

  9. Hoover R, Alcorn H, Lawrence L, Paulson SK, Quintas M, Cammarata SK. Pharmacokinetics of intravenous delafloxacin in patients with end-stage renal disease. J Clin Pharmacol. 2018;58(7):913–9. https://doi.org/10.1002/jcph.1099.

    Article  CAS  PubMed  Google Scholar 

  10. Hoover RK, Alcorn H, Lawrence L, Paulson SK, Quintas M, Luke DR, Cammarata SK. Clinical pharmacokinetics of sulfobutylether-beta-cyclodextrin in patients with varying degrees of renal impairment. J Clin Pharmacol. 2018;58(6):814–22. https://doi.org/10.1002/jcph.1077.

    Article  CAS  PubMed  Google Scholar 

  11. Hoover R, Marbury TC, Preston RA, Quintas M, Lawrence LE, Paulson SK, Luke DR, Cammarata SK. Clinical pharmacology of delafloxacin in patients with hepatic impairment. J Clin Pharmacol. 2017;57(3):328–35. https://doi.org/10.1002/jcph.817.

    Article  CAS  PubMed  Google Scholar 

  12. Paulson SK, Wood-Horrall RN, Hoover R, Quintas M, Lawrence LE, Cammarata SK. The pharmacokinetics of the cyp3a substrate midazolam after steady-state dosing of delafloxacin. Clin Ther. 2017;39(6):1182–1190. https://doi.org/10.1016/j.clinthera.2017.04.009.

    Article  CAS  PubMed  Google Scholar 

  13. Zinner SH, Vostrov SN, Alferova IV, Lubenko IY, Portnoy YA, Firsov AA. Comparative pharmacodynamics of the new fluoroquinolone ABT492 and ciprofloxacin with Escherichia coli and Pseudomonas aeruginosa in an in vitro dynamic model. Int J Antimicrob Agents. 2004;24(2):173–7. https://doi.org/10.1016/j.ijantimicag.2004.02.026.

    Article  CAS  PubMed  Google Scholar 

  14. Almer LS, Hoffrage JB, Keller EL, Flamm RK, Shortridge VD. In vitro and bactericidal activities of ABT-492, a novel fluoroquinolone, against gram-positive and gram-negative organisms. Antimicrob Agents Chemother. 2004;48(7):2771–7. https://doi.org/10.1128/AAC.48.7.2771-2777.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gunderson SM, Hayes RA, Quinn JP, Danziger LH. In vitro pharmacodynamic activities of ABT-492, a novel quinolone, compared to those of levofloxacin against Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. Antimicrob Agents Chemother. 2004;48(1):203–8. https://doi.org/10.1128/AAC.48.1.203-208.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Firsov AA, Alferova IV, Smirnova MV, Lubenko IY, Portnoy YA, Zinner SH. Comparative pharmacodynamics of the new fluoroquinolone ABT492 and levofloxacin with Streptococcus pneumoniae in an in vitro dynamic model. Int J Antimicrob Agents. 2005;25(5):409–13. https://doi.org/10.1016/j.ijantimicag.2005.02.004.

    Article  CAS  PubMed  Google Scholar 

  17. Thabit AK, Crandon JL, Nicolau DP. Pharmacodynamic and pharmacokinetic profiling of delafloxacin in a murine lung model against community-acquired respiratory tract pathogens. Int J Antimicrob Agents. 2016;48(5):535–41. https://doi.org/10.1016/j.ijantimicag.2016.08.012.

    Article  CAS  PubMed  Google Scholar 

  18. Harnett SJ, Fraise AP, Andrews JM, Jevons G, Brenwald NP, Wise R. Comparative study of the in vitro activity of a new fluoroquinolone, ABT-492. J Antimicrob Chemother. 2004;53(5):783–92. https://doi.org/10.1093/jac/dkh180.

    Article  CAS  PubMed  Google Scholar 

  19. Flamm RK, Rhomberg PR, Huband MD, Farrell DJ. In vitro activity of delafloxacin tested against isolates of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. Antimicrob Agents Chemother. 2016;60(10):6381–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Soge OO, Salipante SJ, No D, Duffy E, Roberts MC. In vitro activity of delafloxacin against clinical Neisseria gonorrhoeae isolates and selection of gonococcal delafloxacin resistance. Antimicrob Agents Chemother. 2016;60(5):3106–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pfaller MA, Sader HS, Rhomberg PR, Flamm RK. In vitro activity of delafloxacin against contemporary bacterial pathogens from the United States and Europe, 2014. Antimicrob Agents Chemother. 2017;61(4):2609–16. https://doi.org/10.1128/AAC.02609-16.

    Article  Google Scholar 

  22. McCurdy S, Lawrence L, Quintas M, Woosley L, Flamm R, Tseng C, Cammarata S. In vitro activity of delafloxacin and microbiological response against fluoroquinolone-susceptible and nonsusceptible Staphylococcus aureus isolates from two phase 3 studies of acute bacterial skin and skin structure infections. Antimicrob Agents Chemother. 2017;61(9):e00772–17. https://doi.org/10.1128/aac.00772-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Remy JM, Tow-Keogh CA, McConnell TS, Dalton JM, DeVito JA. Activity of delafloxacin against methicillin-resistant Staphylococcus aureus: resistance selection and characterization. J Antimicrob Chemother. 2012;67(12):2814–20. https://doi.org/10.1093/jac/dks307.

    Article  CAS  PubMed  Google Scholar 

  24. Hammerschlag MR, Roblin PM. The in vitro activity of a new fluoroquinolone, ABT-492, against recent clinical isolates of chlamydia pneumoniae. J Antimicrob Chemother. 2004;54(1):281–2. https://doi.org/10.1093/jac/dkh304.

    Article  CAS  PubMed  Google Scholar 

  25. Waites KB, Crabb DM, Duffy LB. Comparative in Vitro susceptibilities and bactericidal activities of investigational fluoroquinolone ABT-492 and other antimicrobial agents against human mycoplasmas and ureaplasmas. Antimicrob Agents Chemother. 2003;47(12):3973–5. https://doi.org/10.1128/AAC.47.12.3973-3975.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lemaire S, Tulkens PM, Van Bambeke F. Contrasting effects of acidic pH on the extracellular and intracellular activities of the anti-gram-positive fluoroquinolones moxifloxacin and delafloxacin against Staphylococcus aureus. Antimicrob Agents Chemother. 2011;55(2):649–58. https://doi.org/10.1128/AAC.01201-10.

    Article  CAS  PubMed  Google Scholar 

  27. Siala W, Mingeot-Leclercq M, Tulkens PM, Hallin M, Denis O, Van Bambeke F. Comparison of the antibiotic activities of daptomycin, vancomycin, and the investigational fluoroquinolone delafloxacin against biofilms from Staphylococcus aureus clinical isolates. Antimicrob Agents Chemother. 2014;58(11):6385–97. https://doi.org/10.1128/AAC.03482-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bauer J, Siala W, Tulkens PM, Van Bambeke F. A combined pharmacodynamic quantitative and qualitative model reveals the potent activity of daptomycin and delafloxacin against Staphylococcus aureus biofilms. Antimicrob Agents Chemother. 2013;57(6):2726–37. https://doi.org/10.1128/AAC.00181-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Firsov AA, Vostrov SN, Lubenko IY, Arzamastsev AP, Portnoy YA, Zinner SH. ABT492 and levofloxacin: comparison of their pharmacodynamics and their abilities to prevent the selection of resistant Staphylococcus aureus in an in vitro dynamic model. J Antimicrob Chemother. 2004;54(1):178–86. https://doi.org/10.1093/jac/dkh242.

    Article  CAS  PubMed  Google Scholar 

  30. O’Riordan W, Mehra P, Manos P, Kingsley J, Lawrence L, Cammarata S. A randomized phase 2 study comparing two doses of delafloxacin with tigecycline in adults with complicated skin and skin-structure infections. Int J Infect Dis. 2015;30:67–73. https://doi.org/10.1016/j.ijid.2014.10.009.

    Article  CAS  PubMed  Google Scholar 

  31. Kingsley J, Mehra P, Lawrence LE, Henry E, Duffy E, Cammarata SK, Pullman J. A randomized, double-blind, phase 2 study to evaluate subjective and objective outcomes in patients with acute bacterial skin and skin structure infections treated with delafloxacin, linezolid or vancomycin. J Antimicrob Chemother. 2016;71(3):821–9. https://doi.org/10.1093/jac/dkv411.

    Article  CAS  PubMed  Google Scholar 

  32. Pullman J, Gardovskis J, Farley B, Sun E, Quintas M, Lawrence L, Ling R, Cammarata S. Efficacy and safety of delafloxacin compared with vancomycin plus aztreonam for acute bacterial skin and skin structure infections: a phase 3, double-blind, randomized study. J Antimicrob Chemother. 2017;72(12):3471–80. https://doi.org/10.1093/jac/dkx329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. O’Riordan W, McManus A, Teras J, Poromanski I, Cruz-Saldariagga M, Quintas M, Lawrence L, Liang S, Cammarata S. A comparison of the efficacy and safety of intravenous followed by oral delafloxacin with vancomycin plus aztreonam for the treatment of acute bacterial skin and skin structure infections: a phase 3, multinational, double-blind, randomized study. Clin Infect Dis. 2018;67:657–66. https://doi.org/10.1093/cid/ciy165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Longcor J, Hopkins S, Wikler M, Lawrence L. Phase 2 study of the safety and efficacy of oral delafloxacin (DLX) in subjects with acute bacterial exacerbation of chronic bronchitis (ABECB) [poster 1071]. Presented at ID week 2012; san Diego, CA, USA, October 17–21, 2012. https://idsa.confex.com/idsa/2012/webprogram/Paper37662.html. Accessed 20 July 2018.

  35. Longcor J, Hopkins S, Wikler M, Lawrence L. Phase 2 study of the safety and efficacy of oral delafloxacin (DLX) in community acquired pneumonia (CAP) [poster 1069]. Presented at ID week 2012; San Diego, CA, USA, October 17–21, 2012. https://idsa.confex.com/idsa/2012/webprogram/Paper37764.html. Accessed 20 July 2018.

  36. Melinta Therapeutics Inc. A phase 3, multicenter, randomized, double-blind, comparator-controlled study to evaluate the safety and efficacy of intravenous to oral delafloxacin in adult subjects with community-acquired bacterial pneumonia. 2018.https://clinicaltrials.gov/ct2/show/NCT02679573.Accessed July 21, 2018.

  37. Melinta Therapeutics Inc. A comparative evaluation of the single-dose efficacy of oral delafloxacin versus the single-dose efficacy of an intramuscular injection of ceftriaxone in subjects with uncomplicated urogenital gonorrhea. 2018. https://clinicaltrials.gov/ct2/show/NCT02015637.Accessed July 21 2018.

  38. Litwin JS, Benedict MS, Thorn MD, Lawrence LE, Cammarata SK, Sun E. A thorough QT study to evaluate the effects of therapeutic and supratherapeutic doses of delafloxacin on cardiac repolarization. Antimicrob Agents Chemother. 2015;59(6):3469–73. https://doi.org/10.1128/AAC.04813-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony KL Kiang.

Ethics declarations

Funding

No funding or any editorial assistance was received for the preparation of this manuscript.

Conflicts of interest

Jennifer Shiu, Grace Ting, and Tony KL Kiang declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiu, J., Ting, G. & Kiang, T.K. Clinical Pharmacokinetics and Pharmacodynamics of Delafloxacin. Eur J Drug Metab Pharmacokinet 44, 305–317 (2019). https://doi.org/10.1007/s13318-018-0520-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-018-0520-8

Navigation