Skip to main content
Log in

Influence of Orally Administered Borneol on the Expression of Hepatic Transporters in Rats

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Borneol, a traditional Chinese medicine (TCM), is often orally co-administered with other TCM and chemical drugs, but the drug–drug interactions between borneol and the other compounds remains unclear. This work investigates the effect of orally administered borneol on the transcription and expression of hepatic uptake transporters (Ntcp, Oatp2b1, Oatp1a1, Oatp1a4, Oct1, Oct2, Octn2 and Oat2) and efflux transporters (Mdrla, Mrp2, Mrp4 and Mrp5) in rats, aiming to obtain essential information to guide its clinical applications.

Methods

Rats were administered borneol (33, 100 and 300 mg/kg/day, respectively) and vehicle (control) orally via intragastric gavage for 7 consecutive days. The mRNA levels of rat hepatic uptake transporters (Ntcp, Oatp2b1, Oatp1a1, Oatp1a4, Oct1, Oct2, Octn2 and Oat2) and efflux transporters (Mdrla, Mrp2, Mrp4 and Mrp5) were determined using real-time quantitative PCR, while the hepatic Ntcp, Mdrla, Mrp2, Mrp4 and Mrp5 proteins were quantified using western blotting.

Results

The oral administration of borneol led to dose-dependent inhibition of mRNA and protein expression of Mrp4 and Mdr1a, dose-independent inhibition of mRNA and protein expression of Mrp2, and inverse dose-dependent inhibition of mRNA and protein expression of Ntcp. No significant effects were observed for mRNA expression of the other transporters tested following borneol administration.

Conclusions

Oral administration of borneol may affect the metabolism of substances that are involved in bile acid enterohepatic circulation and substrates of Ntcp, Mdrla, Mrp2 and Mrp4 transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhang L, Huang SM, Lesko LJ. Transporter-mediated drug–drug interactions. Clin Pharmacol Ther. 2011;89(4):481–4.

    Article  CAS  Google Scholar 

  2. Shimizu M, Fuse K, Okudaira K, Nishigaki R, Maeda K, Kusuhara H, Sugiyama Y. Contribution of OATP (organic anion-transporting polypeptide) family transporters to the hepatic uptake of fexofenadine in humans. Drug Metab Dispos. 2005;33(10):1477–81.

    Article  CAS  Google Scholar 

  3. Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 2003;55(1):3–29.

    Article  CAS  Google Scholar 

  4. International Transporter Consortium, Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36.

    Article  Google Scholar 

  5. Mandery K, Bujok K, Schmidt I, Keiser M, Siegmund W, Balk B, König J, Fromm MF, Glaeser H. Influence of the flavonoids apigenin, kaempferol, and quercetin on the function of organic anion transporting polypeptides 1A2 and 2B1. Biochem Pharmacol. 2010;80(11):1746–53.

    Article  CAS  Google Scholar 

  6. Zolk O, Fromm MF. Transporter-mediated drug uptake and efflux: important determinants of adverse drug reactions. Clin Pharmacol Ther. 2011;89(6):798–805.

    Article  CAS  Google Scholar 

  7. Chu Y, Zhang L, Wang XY, Guo JH, Guo ZX, Ma XH. The effect of Compound Danshen Dripping Pills, a Chinese herb medicine, on the pharmacokinetics and pharmacodynamics of warfarin in rats. J Ethnopharmacol. 2013;137(3):1457–61.

    Article  Google Scholar 

  8. Guo QX, Zhang J, Li YQ, Zhang GF. Study on anti-atherosclerotic effect of Suxiao Jiuxin Pill and its mechanism. Afr J Tradit Complement Altern Med. 2013;11(1):97–102.

    PubMed  PubMed Central  Google Scholar 

  9. Fu WJ, Lei T, Yin Z, Pan JH, Chai YS, Xu XY, Yan YX, Wang ZH, Ke J, Wu G, Xu RH, Paranjpe M, Qu L, Nie H. Anti-atherosclerosis and cardio-protective effects of the Angong Niuhuang Pill on a high fat and vitamin D3 induced rodent model of atherosclerosis. J Ethnopharmacol. 2017;195:118–26.

    Article  Google Scholar 

  10. Wei J, Yao L, Yang L, Zhao W, Shi S, Cai Q, Chen D, Li W, Wang Q. Alteration of glutamate/GABA balance during acute alcohol intoxication in rats: effect of Xingnaojing injection. J Ethnopharmacol. 2015;166:333–9.

    Article  CAS  Google Scholar 

  11. He H, Shen Q, Li J. Effects of borneol on the intestinal transport and absorption of two P-glycoprotein substrates in rats. Arch Pharm Res. 2011;34(7):1161–70.

    Article  CAS  Google Scholar 

  12. Wang SX, Tan N, Ma CC, Wang J, Jia P, Liu JH, Yang Y, Xie ZX, Zhao K, Zheng XH. Inhibitory effects of benzaldehyde, vanillin, muscone and borneol on P-glycoprotein in Caco-2 cells and everted gut sac. Pharmacology. 2018;101(5–6):269–77.

    Article  CAS  Google Scholar 

  13. Li Z, Sun D, Yang H, Liu X, Luan L, Bai J, Cui H. Effect of borneol on the distribution of danshensu to the eye in rabbit via oral administration. Curr Eye Res. 2010;35(7):565–72.

    Article  CAS  Google Scholar 

  14. Qi HP, Gao XC, Zhang LQ, Wei SQ, Bi S, Yang ZC, Cui H. In vitro evaluation of enhancing effect of borneol on transcorneal permeation of compounds with different hydrophilicities and molecular sizes. Eur J Pharmacol. 2013;705(1–3):20–5.

    Article  CAS  Google Scholar 

  15. Jin D, Wang F, Qu L, Li Z, Jin L, Liu P, Xu X, Cui H. The distribution and expression of claudin-5 and occluding at the rat blood-optic nerve barrier after borneol treatment. Mol Biol Rep. 2011;38(2):913–20.

    Article  CAS  Google Scholar 

  16. Yu B, Ruan M, Dong X, Yu Y, Cheng H. The mechanism of the opening of the blood–brain barrier by borneol: a pharmacodynamics and pharmacokinetics combination study. J Ethnopharmacol. 2013;150(3):1096–108.

    Article  CAS  Google Scholar 

  17. Gao C, Li X, Li Y, Wang L, Xue M. Pharmacokinetic interaction between puerarin and edaravone, and effect of borneol on the brain distribution kinetics of puerarin in rats. J Pharm Pharmacol. 2010;62(3):360–7.

    Article  CAS  Google Scholar 

  18. Cai Z, Hou S, Li Y, Zhao B, Yang Z, Xu S, Pu J. Effect of borneol on the distribution of gastrodin to the brain in mice via oral administration. J Drug Target. 2008;16(2):178–84.

    Article  CAS  Google Scholar 

  19. Dai JP, Chen J, Bei YF. Influence of borneol on primary mice oral fibroblasts: a penetration enhancer may be used in oral submucous fibrosis. J Oral Pathol Med. 2009;38(3):276–81.

    Article  CAS  Google Scholar 

  20. Lai XJ, Zhang L, Li JS, Liu HQ, Liu XH, Di LQ, Cai BC, Chen LH. Comparative pharmacokinetic and bioavailability studies of three salvianolic acids after the administration of Salviaemiltiorrhizae alone or with synthetical borneol in rats. Fitoterapia. 2011;82(6):883–8.

    Article  CAS  Google Scholar 

  21. Fan X, Chai LJ, Zhang H, Wang YF, Zhang BL, Gao XM. Borneol depresses P-glycoprotein function by a NF-κB signaling mediated mechanism in a blood brain barrier in vitro model. Int J Mol Sci. 2015;16(11):27576–88.

    Article  CAS  Google Scholar 

  22. Wu T, Zhang AQ, Lu HY, Cheng QY. The role and mechanism of borneol to open the blood–brain barrier. Integr Cancer Ther. 2018;1534735418767553.

  23. Zhang R, Mi SQ, Wang NS. Effect of borneol on cytochrome P450 3A enzyme and midazolam pharmacokinetics in rats. Eur J Drug Metab Pharmacokinet. 2013;38(3):159–69.

    Article  Google Scholar 

  24. Chen JY, Wang JJ, Meng MR, Chen Y. Borneol is an inducer of rat hepatic CYP2D activity in vivo. Acta Pharm Sin. 2015;50(4):459–63.

    Google Scholar 

  25. Chen JY, Huang XT, Wang JJ, Chen Y. In vivo effect of borneol on rat hepatic CYP2B expression and activity. Chem Biol Interact. 2017;261:96–102.

    Article  CAS  Google Scholar 

  26. National Pharmacopoeia Committee of China. Pharmacopoeia of People’s Republic of China, Part 1. Beijing: Chemical Industry Press; 2015. p. 88.

    Google Scholar 

  27. Bhatia SP, McGinty D, Letizia CS, Api AM. Fragrance material review on L-borneol. Food Chem Toxicol. 2008;46:S81–4.

    PubMed  Google Scholar 

  28. Le VM, Lecureur V, Stieger B, Fardel O. Regulation of drug transporter expression in human hepatocytes exposed to the proinflammatory cytokines tumor necrosis factor-alpha or interleukin-6. Drug Metab Dispos. 2009;37(3):685–93.

    Article  Google Scholar 

  29. Alrefai WA, Gill RK. Bile acid transporters: structure, function, regulation and pathophysiological implications. Pharm Res. 2007;24(10):1803–23.

    Article  CAS  Google Scholar 

  30. Stieger B. The role of the sodium-taurocholate co-transporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. Drug transporters. Berlin: Springer; 2011. p. 205–59.

    Google Scholar 

  31. Ho RH, Tirona RG, Leake BF, Glaeser H, Lee W, Lemke CJ, Wang Y, Kim RB. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology. 2006;130(6):1793–806.

    Article  CAS  Google Scholar 

  32. Dawson PA, Lan T, Rao A. Bile acid transporters. J Lipid Res. 2009;50(12):2340–57.

    Article  CAS  Google Scholar 

  33. Choi MK, Shin HJ, Choi YL, Deng JW, Shin JG, Song IS. Differential effect of genetic variants of Na+-taurocholate cotransporting polypeptide (NTCP) and organic anion-transporting polypeptide 1B1 (OATP1B1) on the uptake of HMG-CoA reductase inhibitors. Xenobiotica. 2011;41(1):24–34.

    Article  CAS  Google Scholar 

  34. Gartung C, Matern S. Molecular regulation of sinusoidal liver bile acid transporters during cholestasis. Yale J Biol Med. 1997;70(4):355–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Choudhuri S, Klaassen CD. Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int J Toxicol. 2006;25(4):231–59.

    Article  CAS  Google Scholar 

  36. Zhang QL, Fu BM, Zhang ZJ. Borneol, a novel agent that improves central nervous system drug delivery by enhancing blood–brain barrier permeability. Drug Deliv. 2017;24(1):1037–44.

    Article  CAS  Google Scholar 

  37. Zhou SF. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica. 2008;38(7–8):802–32.

    Article  CAS  Google Scholar 

  38. Miller DS, Bauer B, Hartz AM. Modulation of P-glycoprotein at the blood–brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev. 2008;60(2):196–209.

    Article  CAS  Google Scholar 

  39. Maki H, Hiroyuki K, Masashi A, John DS, Kenji T, Yuichi S. Multidrug resistance-associated protein 4 is involved in the urinary excretion of hydrochlorothiazide and furosemide. J Am Soc Nephrol. 2007;18(1):37–45.

    Article  Google Scholar 

  40. Lei C, Hiroyuki K, Masashi A, John DS, Kenji T, Yuichi S. Involvement of MRP4 (ABCC4) in the luminal efflux of ceftizoxime and cefazolin in the kidney. Mol Pharmacol. 2007;71(6):1591–7.

    Article  Google Scholar 

  41. Gabriele J, Brian B, Dietrich K. The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. J Biol Chem. 2000;275(39):30069–74.

    Article  Google Scholar 

  42. Peter RW, Ingrid DDH, Glen R, Jos HB, Jan W, Piet B. Characterization of the MRP4- and MRP5-mediated transport of cyclic nucleotides from intact cells. J Biol Chem. 2003;278(20):17664–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Ethics declarations

Funding

No funding was received to conduct this study.

Conflict of interest

Lin Chen, Lu Liao, Ting Zhai, Xiangtao Huang and Yong Chen declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethic Committee of Hubei University and complied with health guidelines for the care and use of laboratory animals.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Liao, L., Zhai, T. et al. Influence of Orally Administered Borneol on the Expression of Hepatic Transporters in Rats. Eur J Drug Metab Pharmacokinet 44, 103–109 (2019). https://doi.org/10.1007/s13318-018-0499-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-018-0499-1

Navigation