Skip to main content

Advertisement

Log in

Nitrogen and phosphorus retention in Danish restored wetlands

  • Research Article
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

Wetland restoration is considered an effective mitigation method for decreasing nitrogen (N) losses from agricultural land. However, when former cropland becomes rewetted, there is a risk that phosphorus (P) accumulated in soils will be released downstream. Here, we evaluate N and P retention in eight restored wetlands in Denmark monitored for 1 year using a mass balance approach. The wetlands represented different types, for instance, lakes and wet meadows, and ages (3–13 years). We also show the results from a long-term monitoring station established in 1973, located downstream a lake that was re-established in 2006. All restored wetlands removed total N (42–305 kg N ha−1 year−1), while some wetlands acted as source of total P and others as a sink (− 2.8 to 10 kg P ha−1 year−1). Our study confirms that restored wetlands are effective at removing N, whereas P can be released for several years after restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aldous, A.R., C.B. Craft, C.J. Stevens, M.J. Barry, and L.B. Bach. 2007. Soil phosphorus release from a restoration wetland, Upper Klamath Lake, Oregon. Wetlands 27: 1025–1035.

    Article  Google Scholar 

  • Audet, J., L. Elsgaard, C. Kjaergaard, S.E. Larsen, and C.C. Hoffmann. 2013. Greenhouse gas emissions from a Danish riparian wetland before and after restoration. Ecological Engineering 57: 170–182.

    Article  Google Scholar 

  • Audet, J., L. Martinsen, B. Hasler, H. de Jonge, E. Karydi, N.B. Ovesen, and B. Kronvang. 2014. Comparison of sampling methodologies for nutrient monitoring in streams: Uncertainties, costs and implications for mitigation. Hydrology and Earth System Sciences 18: 4721–4731.

    Article  Google Scholar 

  • Bernhardt, E.S., M.A. Palmer, J.D. Allan, G. Alexander, K. Barnas, S. Brooks, J. Carr, S. Clayton, et al. 2005. Ecology. Synthesizing U.S. river restoration efforts. Science 308: 636–637.

    Article  CAS  Google Scholar 

  • Blicher-Mathiesen, G., A. Rasmussen, J. Rolighed, H. E. Andersen, M. V. Carstensen, P. G. Jensen, J. Wienke, B. Hansen et al. 2018. Landovervågningsoplande 2016. Aarhus Universitet, DCE – Nationalt Center for Miljø og Energi.

  • Bodirsky, B.L., A. Popp, H. Lotze-Campen, J.P. Dietrich, S. Rolinski, I. Weindl, C. Schmitz, C. Muller, et al. 2014. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communications 5: 3858.

    Article  CAS  Google Scholar 

  • Cassidy, R., and P. Jordan. 2011. Limitations of instantaneous water quality sampling in surface-water catchments: Comparison with near-continuous phosphorus time-series data. Journal of Hydrology 405: 182–193.

    Article  CAS  Google Scholar 

  • Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, et al. 2014. Carbon and other biogeochemical cycles. pp. 465–570 Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

  • Comín, F.A., J.A. Romero, V. Astorga, and C. García. 1997. Nitrogen removal and cycling in restored wetlands used as filters of nutrients for agricultural runoff. Water Science and Technology 35: 255–261.

    Article  Google Scholar 

  • Constantin, J., B. Mary, F. Laurent, G. Aubrion, A. Fontaine, P. Kerveillant, and N. Beaudoin. 2010. Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments. Agriculture, Ecosystems & Environment 135: 268–278.

    Article  CAS  Google Scholar 

  • Davidsson, T.E., and M. Ståhl. 2000. The influence of organic carbon on nitrogen transformations in five wetland soils. Soil Science Society of America Journal 64: 1129–1136.

    Article  CAS  Google Scholar 

  • DS/EN ISO 6878. 2004. Water quality - Determination of phosphorus - Ammonium molybdate spectrometric method.

  • DS/EN ISO 11905. 2004. Water quality—Determination of nitrogen—Part 1: Method using oxidative digestion with peroxydisulfate.

  • European Commission. 2000. Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Community, L327/1 (2000).

  • Fisher, J., and M.C. Acreman. 2004. Wetland nutrient removal: a review of the evidence. Hydrology and Earth System Sciences 8: 673–685.

    Article  CAS  Google Scholar 

  • Fowler, D., M. Coyle, U. Skiba, M.A. Sutton, J.N. Cape, S. Reis, L.J. Sheppard, A. Jenkins, et al. 2013. The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences 368: 165.

    Google Scholar 

  • Galloway, J.N., A.R. Townsend, J.W. Erisman, M. Bekunda, Z. Cai, J.R. Freney, L.A. Martinelli, S.P. Seitzinger, et al. 2008. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320: 889–892.

    Article  CAS  Google Scholar 

  • Grizzetti, B., F. Bouraoui, and A. Aloe. 2012. Changes of nitrogen and phosphorus loads to European seas. Global Change Biology 18: 769–782.

    Article  Google Scholar 

  • Hernandez, M.E., and W.J. Mitsch. 2007. Denitrification potential and organic matter as affected by vegetation community, wetland age, and plant introduction in created wetlands. Journal of Environmental Quality 6: 333–342.

    Article  CAS  Google Scholar 

  • Hill, A.R. 1996. Nitrate removal in stream riparian zones. Journal of Environmental Quality 25: 743–755.

    Article  CAS  Google Scholar 

  • Hoffmann, C.C., and A. Baattrup-Pedersen. 2007. Re-establishing freshwater wetlands in Denmark. Ecological Engineering 30: 157–166.

    Article  Google Scholar 

  • Hoffmann, C. C., A. Baattrup-Pedersen, E. Jeppesen, S. Amsinck, and P. Clausen. 2006. Overvågning af Vandmiljøplan II-Vådområder 2005. Danmarks Miljøundersøgelser.

  • Hoffmann, C.C., L. Heiberg, J. Audet, B. Schønfeldt, A. Fuglsang, B. Kronvang, N.B. Ovesen, C. Kjaergaard, et al. 2012. Low phosphorus release but high nitrogen removal in two restored riparian wetlands inundated with agricultural drainage water. Ecological Engineering 46: 75–87.

    Article  Google Scholar 

  • Hoffmann, C.C., C. Kjaergaard, J. Uusi-Kamppa, H.C.B. Hansen, and B. Kronvang. 2009. Phosphorus retention in riparian buffers: Review of their efficiency. Journal of Environmental Quality 38: 1941–1955.

    Article  CAS  Google Scholar 

  • Hoffmann, C.C., B. Kronvang, and J. Audet. 2011. Evaluation of nutrient retention in four restored Danish riparian wetlands. Hydrobiologia 674: 5–24.

    Article  CAS  Google Scholar 

  • IPCC. 2013. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jansson, M., A. Rune, B. Hans, and L. Leonardson. 1994. Wetlands and lakes as nitrogen traps. Ambio 23: 320–325.

    Google Scholar 

  • Jensen, H.S., P. Kristensen, E. Jeppesen, and A. Skytthe. 1992. Iron-phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia 235: 731–743.

    Article  Google Scholar 

  • Jordan, T.E., D.F. Whigham, K.H. Hofmockel, and M.A. Pittek. 2003. Nutrient and sediment removal by a restored wetland receiving agricultural runoff. Journal of Environmental Quality 32: 1534–1547.

    Article  CAS  Google Scholar 

  • Kronvang, B., and A.J. Bruhn. 1996. Choice of sampling strategy and estimation method for calculating nitrogen and phosphorus transport in small lowland streams. Hydrological Processes 10: 1483–1501.

    Article  Google Scholar 

  • Kronvang, B., E. Jeppesen, D.J. Conley, M. Søndergaard, S.E. Larsen, N.B. Ovesen, and J. Carstensen. 2005. Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters. Journal of Hydrology 304: 274–288.

    Article  CAS  Google Scholar 

  • Land, M., W. Granéli, A. Grimvall, C.C. Hoffmann, W.J. Mitsch, and K.S. Tonderski. 2016. How effective are created or restored freshwater wetlands for nitrogen and phosphorus removal? A systematic review protocol. Environmental Evidence 5: 9.

    Article  Google Scholar 

  • Lu, C., and H. Tian. 2017. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth System Science Data 9: 181–192.

    Article  Google Scholar 

  • Method 4500-NH3 Nitrogen (Ammonia). 2017. Standard Methods For the Examination of Water and Wastewater. https://doi.org/10.2105/smww.2882.087.

  • Method 4500-NO3 Nitrogen (Nitrate). 2017. Standard Methods For the Examination of Water and Wastewater. https://doi.org/10.2105/smww.2882.089.

  • Method 4500-P Phosphorus. 2017. Standard Methods For the Examination of Water and Wastewater. https://doi.org/10.2105/smww.2882.093.

  • Mitsch, W.J., and J.G. Gosselink. 1986. Wetlands. New York: Von Nostrand Reinhold.

    Google Scholar 

  • Mitsch, W.J., and S.E. Jørgensen. 2004. Ecological engineering and ecosystem restoration. New York: Wiley.

    Google Scholar 

  • Moreno-Mateos, D., M.E. Power, F.A. Comin, and R. Yockteng. 2012. Structural and functional loss in restored wetland ecosystems. PLoS Biology 10: e1001247.

    Article  CAS  Google Scholar 

  • R Development Core Team. 2018. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Reddy, K.R., and R.D. DeLaune. 2008. Biogeochemistry of wetlands: Science and applications. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Roberts, W.M., M.I. Stutter, and P.M. Haygarth. 2012. Phosphorus retention and remobilization in vegetated buffer strips: A review. Journal of Environmental Quality 41: 389–399.

    Article  CAS  Google Scholar 

  • Rowe, H., P.J.A. Withers, P. Baas, N.I. Chan, D. Doody, J. Holiman, B. Jacobs, H. Li, et al. 2016. Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security. Nutrient Cycling in Agroecosystems 104: 393–412.

    Article  CAS  Google Scholar 

  • Smith, V.H., G.D. Tilman, and J.C. Nekola. 1999. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution 100: 179–196.

    Article  CAS  Google Scholar 

  • Strand, J.A., and S.E.B. Weisner. 2013. Effects of wetland construction on nitrogen transport and species richness in the agricultural landscape—Experiences from Sweden. Ecological Engineering 56: 14–25.

    Article  Google Scholar 

  • Thodsen, H. 2007. The influence of climate change on stream flow in Danish rivers. Journal of Hydrology 333: 226–238.

    Article  Google Scholar 

  • Tiedje, J.M. 1982. Denitrification. In Methods of soil analysis. Part 2, ed. A.L. Page, 1011–1024. Madison: American Society of Agronomy.

    Google Scholar 

  • van Geer, F.C., B. Kronvang, and H.P. Broers. 2016. High-resolution monitoring of nutrients in groundwater and surface waters: Process understanding, quantification of loads and concentrations, and management applications. Hydrology and Earth System Sciences 20: 3619–3629.

    Article  CAS  Google Scholar 

  • Van Meter, K.J., P. Van Cappellen, and N.B. Basu. 2018. Legacy nitrogen may prevent achievement of water quality goals in the Gulf of Mexico. Science 360: 427–430.

    Article  CAS  Google Scholar 

  • Verhoeven, J.T.A. 2014. Wetlands in Europe: Perspectives for restoration of a lost paradise. Ecological Engineering 66: 6–9.

    Article  Google Scholar 

  • Verhoeven, J.T.A., B. Arheimer, C.Q. Yin, and M.M. Hefting. 2006. Regional and global concerns over wetlands and water quality. Trends in Ecology & Evolution 21: 96–103.

    Article  Google Scholar 

  • Vymazal, J. 2017. The use of constructed wetlands for nitrogen removal from agricultural drainage: A review. ScientiaAgriculturae Bohemica 48: 82–91.

    Article  Google Scholar 

  • Zak, D., and J. Gelbrecht. 2007. The mobilisation of phosphorus, organic carbon and ammonium in the initial stage of fen rewetting (a case study from NE Germany). Biogeochemistry 85: 141–151.

    Article  CAS  Google Scholar 

  • Zak, D., J. Gelbrecht, C. Wagner, and C.E.W. Steinberg. 2008. Evaluation of phosphorus mobilization potential in rewetted fens by an improved sequential chemical extraction procedure. European Journal of Soil Science 59: 1191–1201.

    Article  CAS  Google Scholar 

  • Zak, D., J. Gelbrecht, S. Zerbe, T. Shatwell, M. Barth, A. Cabezas, and P. Steffenhagen. 2014. How helophytes influence the phosphorus cycle in degraded inundated peat soils—Implications for fen restoration. Ecological Engineering 66: 82–90.

    Article  Google Scholar 

  • Zak, D., C. Wagner, B. Payer, J. Augustin, and J. Gelbrecht. 2010. Phosphorus mobilization in rewetted fens: The effect of altered peat properties and implications for their restoration. Ecological Applications 20: 1336–1349.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ane Kjeldgaard for her help with GIS, Anne Mette Poulsen for improving the English language and Niels Bering Ovesen and Dorte Nedergaard for quality checking the discharge and nutrient data. We also thank the staff from the Danish Nature Agency and municipalities involved in the monitoring of the restored wetlands. The authors are grateful for the comments received on a previous version of this manuscript by two anonymous reviewers and the editor. This work received funding from the Danish ministry of environment and food.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Audet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2451 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Audet, J., Zak, D., Bidstrup, J. et al. Nitrogen and phosphorus retention in Danish restored wetlands. Ambio 49, 324–336 (2020). https://doi.org/10.1007/s13280-019-01181-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-019-01181-2

Keywords

Navigation