Skip to main content

Advertisement

Log in

Marine steroid derived from Acropora formosa enhances mitochondrial-mediated apoptosis in non-small cell lung cancer cells

  • Original Article
  • Published:
Tumor Biology

Abstract

p53 pathway has been revealed to mediate cellular stress responses and trigger DNA repair, cell cycle arrest, senescence, and apoptosis. We isolated 2-ethoxycarbonyl-2-β-hydroxy-A-nor-cholest-5-ene-4one (ECHC) from butanol extracts of scleractinian coral Acropora formosa and reported its potential antioxidant and antimicrobial activity as well as less toxicity against zebrafish Danio rerio. In the present study, we intend to explore p53-mediated apoptosis pathway enhanced by ECHC in A549 human non-small cell lung cancer cell lines. This report shows that ECHC increases ROS generation and sensitizes mitochondrial membrane that leads to the release of cytochrome C (Cyto C) into cytosol. Further, ECHC decreases the expression of antiapoptotic genes such as TNF-α, IL-8, Bcl2, MMP2, and MMP9 which are actively involved in cancer cell proliferation, invasion, and metastasis etc. It also increases the expression of apoptotic genes Cyto C, Bax, and p21, which are responsible for cell cycle arrest and cell death. The tumor suppressor p53 was also observed to be upregulated during ECHC treatment in untransformed cells and was more likely to result in cell cycle arrest, senescence, and apoptosis. Finally, ECHC also down regulates the expression of caspase-9 and caspase-3 which are the death stage of intrinsic apoptosis. Our findings suggested that ECHC enhances ROS generation and mitochondrial sensitization determines the threshold for irreversible p53-mediated intrinsic apoptosis pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, et al. Reduced lung cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365:395–409.

    Article  PubMed  Google Scholar 

  2. Karthik S, Sankar R, Varunkumar K, Ravikumar V. Romidepsin induces cell cycle arrest, apoptosis, histone hyperacetylation and reduces matrix metalloproteinases 2 and 9 expression in bortezomib sensitized non-small cell lung cancer cells. Biomed Pharmacother. 2014;68:327–34.

    Article  CAS  PubMed  Google Scholar 

  3. Vazquez A, Bond EE, Levine AJ, Bond GL. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov. 2008;7:979–87.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang J, Wu D, Xing Z, Liang S, Han H, Shi H, et al. N-isopropylacrylamide-modified polyethylenimine-mediated p53 gene delivery to prevent the proliferation of cancer cells. Colloids Surf B. 2015;129:54–62.

    Article  CAS  Google Scholar 

  5. Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nature Rev Cancer. 2014;14:359–70.

    Article  CAS  Google Scholar 

  6. Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol. 2015;16:393–405.

    Article  CAS  PubMed  Google Scholar 

  7. Olsson A, Manzl C, Strasser A, Villunger A. How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ. 2007;14:1561–75.

    Article  CAS  PubMed  Google Scholar 

  8. Rozan LM, El-Deiry WS. p53 downstream target genes and tumor suppression: a classical view in evolution. Cell Death Differ. 2007;14:3–9.

    Article  CAS  PubMed  Google Scholar 

  9. Li Z, Zhang L, Li Q. Induction of apoptosis in cancer cells through N-acetyl-l-leucine-modified polyethylenimine-mediated p53 gene delivery. Colloids Surf B. 2015;135:630–8.

    Article  CAS  Google Scholar 

  10. Misra SK, Naz S, Kondaiah P, Bhattacharya S. A cationic cholesterol based nanocarrier for the delivery of p53-EGFP-C3 plasmid to cancer cells. Biomaterials. 2014;35:1334–46.

    Article  CAS  PubMed  Google Scholar 

  11. Brenner C, Grimm S. The permeability transition pore complex in cancer cell death. Oncogene. 2006;25:4744–56.

    Article  CAS  PubMed  Google Scholar 

  12. Wang L, Hu T, Shen J, Zhang L, Lok-Yi Chan R, Lu L, et al. Dihydrotanshinone I induced apoptosis and autophagy through caspase dependent pathway in colon cancer. Phytomed. 2015;22:1079–87.

    Article  CAS  Google Scholar 

  13. Tait SWG, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010;11:621–32.

    Article  CAS  PubMed  Google Scholar 

  14. Jha RK, Zi-rong X. Biomedical compounds from marine organisms. Mar Drugs. 2004;2:123–46.

    Article  CAS  PubMed Central  Google Scholar 

  15. Khalesi MK, Beeftink HH, Wijffels RH. The soft coral Sinularia flexibilis: potential for drug development. In: Leewis RJ, Janse M, editors. Advances in coral husbandry in public aquariums. Arnhem: Burgers' Zoo, (Public Aquarium Husbandry Series 2); 2008. p. 47–60.

    Google Scholar 

  16. Huang LH, Xu HD, Yang ZY, Zheng YF, Liu HM. Synthesis and anticancer activity of novel C6-piperazine substituted purine steroid–nucleosides analogues. Steroids. 2014;82:1–6.

    Article  PubMed  Google Scholar 

  17. Salvador JA, Carvalho JF, Neves MA, Silvestre SM, Leitao AJ, Silva MM, et al. Anticancer steroids: linking natural and semi-synthetic compounds. Nat Prod Rep. 2013;30:324–74.

    Article  CAS  PubMed  Google Scholar 

  18. Li G, Deng Z, Guan H, van Ofwegen L, Proksch P, Lin W. Steroids from the soft coral Dendronephthya sp. Steroids. 2005;70(1):13–8.

    Article  CAS  PubMed  Google Scholar 

  19. Ramalingam V, Rajaram R. Acute toxicity of 2-ethoxycarbonyl-2-Β-hydroxy-A-nor-cholest-5-ene-4one in zebrafish and in vitro antioxidant activity. Anal Methods. 2016. In press.

  20. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, et al. New colourimetric cytotoxicity assay for anti-cancer drug screening. J Natl Canc Inst. 1990;82:1107–12.

    Article  CAS  Google Scholar 

  21. Janson V, Behnam-Motlagh P, Henriksson R, Horstedt P, Engstrom KG, Grankvist K. Phase-contrast microscopy studies of early cisplatin-induced morphological changes of malignant mesothelioma cells and the correspondence to induced apoptosis. Exp Lung Res. 2008;34(2):49–67.

    Article  CAS  PubMed  Google Scholar 

  22. Zainal Ariffin SH, Wan Omar WHH, Safian MF, Ariffin ZZ, Senafi S, Abdul Wahab RM. Intrinsic anticarcinogenic effects of Piper sarmentosu methanolic extract on a human hepatoma cell line. Cancer Cell Int. 2009;9:6.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang J, Li J-Z, Lu A-X, Zhang K-F, Li B-J. Anticancer effect of salidroside on A549 lung cancer cells through inhibition of oxidative stress and phosphor-p38 expression. Oncol Lett. 2014;7:1159–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lampidis TJ, Bernal SD, Summerhayes IC, Chen LB. Selective toxicity of rhodamine 123 in carcinoma cells in vitro. Cancer Res. 1983;43(2):716–20.

    CAS  PubMed  Google Scholar 

  25. Maurya DK, Nandakumar N, Devasagayam TPA. Anticancer property of gallic acid in A549, a human lung adenocarcinoma cell line, and possible mechanisms. J Clin Biochem Nutr. 2011;48(1):85–90.

    Article  CAS  PubMed  Google Scholar 

  26. Karthik S, Sankar R, Varunkumar K, Anusha C, Ravikumar V. Blocking NF-kB sensitizes non-small cell lung cancer cells to histone deacetylase inhibitor induced extrinsic apoptosis through generation of reactive oxygen species. Biomed Pharmacother. 2015;69:337–44.

    Article  CAS  PubMed  Google Scholar 

  27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.

    CAS  PubMed  Google Scholar 

  28. Abhari BA, Davoodi J. BIR2 domain of XIAP plays a marginal role in inhibition of executioner caspases. Int J Biol Macromol. 2010;46(3):337–41.

    Article  CAS  PubMed  Google Scholar 

  29. Motomura M, Kwon KM, Suh SJ, Lee YC, Kim YK, Lee IS, et al. Propolis induces cell cycle arrest and apoptosis in human leukemic U937 cells through Bcl2/Bax regulation. Environ ToxicolPharmacol. 2008;26:61–7.

    CAS  Google Scholar 

  30. Khan MR, Mlungwana SM. c-sitosterol, a cytotoxic sterol from Markhamia zanzibarica and Kigelia africana. Fitoterapia. 1999;70:96–7.

    Article  CAS  Google Scholar 

  31. Panchal RG. Novel therapeutic strategies to selectively kill cancer cells. Biochem Pharmacol. 1998;55:247–52.

    Article  CAS  PubMed  Google Scholar 

  32. Collins JA, Schandl CA, Young KK, Vesely J, Willingham MC. Major DNA fragmentation is a late event in apoptosis. J Histochem Cytochem. 1997;5:923–34.

    Article  Google Scholar 

  33. Bufalo MC, Candeias JM, Sforcin JM. In vitro cytotoxic effect of Brazilian green propolis on human laryngeal epidermoid carcinoma (HEP-2) cells. Evid Based Complement Alternat Med. 2007;22:1–5.

    Google Scholar 

  34. Yamamoto M, Maehara Y, Oda S, Ichiyoshi Y, Kusumoto T, Sugimachi K. The p53 tumor suppressor gene in anticancer agent-induced apoptosis and chemosensitivity of human gastrointestinal cancer cell lines. Cancer Chemother Pharmacol. 1999;43:43–9.

    Article  CAS  PubMed  Google Scholar 

  35. Benguedouar L, Boussenane HN, Kesbsa W, Alyane M, Rouibah H, Lahouel M. Efficiency of propolis extract against mitochondrial stress induced by antineoplastic agents (doxorubicin and vinblastine) in rats. Ind J Exper Biol. 2008;46:112–9.

    Google Scholar 

  36. Efferth T, Konkimalla VB, Wang YF, Sauerbrey A, Meinhardt S, Zintl F, et al. Prediction of broad spectrum resistance of tumors towards anticancer drugs. Clin Cancer Res. 2008;14:2405–12.

    Article  CAS  PubMed  Google Scholar 

  37. Cheng T-C, Lai C-S, Chung M-C, Kalyanam N, Majeed M, Chi-Tang Ho C-T, et al. Potent anti-cancer effect of 39-hydroxypterostilbene in human colon xenograft tumors. PLoS One. 2014;9(11), e111814.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Le Bras M, Clement MV, Pervaiz S, Brenner C. Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol. 2005;20(1):205–19.

    PubMed  Google Scholar 

  39. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461(7267):1071–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Res Upd. 2004;7(2):97–110.

    Article  CAS  Google Scholar 

  41. Fleischer A, Ghadiri A, Dessauge AF, Duhamela M, Rebollo MP, Alvarez-Franco F, et al. Modulating apoptosis as a target for effective therapy. Mol Immunol. 2006;43:1065–79.

    Article  CAS  PubMed  Google Scholar 

  42. Kim R, Emi M, Tanabe K. Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol. 2006;57:545–53.

    Article  CAS  PubMed  Google Scholar 

  43. Emaus RK, Grunwald R, Lemaster JJ. Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta. 1986;850:436–48.

    Article  CAS  PubMed  Google Scholar 

  44. Krishnaveni M, Suresh K. Induction of apoptosis by quinine in human laryngeal carcinoma cell line (KB). Int J Curr Res Aca Rev. 2015;3(3):169–78.

    CAS  Google Scholar 

  45. Zhang Z, Wang C-Z, Du G-J, Qi L-W, Calway T, He T-C, et al. Genistein induces G2/M cell cycle arrest and apoptosis via ATM/p53-dependent pathway in human colon cancer cells. Int J Oncol. 2013;43:289–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ma C, Song M, Zhang Y, Yan M, Zhang M, Bi H. Nickel nanowires induce cell cycle arrest and apoptosis by generation of reactive oxygen species in HeLa cells. Toxicol Rep. 2014;1:114–21.

    Article  CAS  Google Scholar 

  47. Cann KL, Hicks GG. Regulation of the cellular DNA double-strand break response. Biochem Cell Biol. 2007;85:663–74.

    Article  CAS  PubMed  Google Scholar 

  48. ShiraziFard S, Blixt MKE, Hallbook F. The p53 co-activator Zac1 neither induces cell cycle arrest nor apoptosis in chicken Lim1 horizontal progenitor cells. Cell Death Discov. 2015;1:15023.

    Google Scholar 

  49. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408:307–10.

    Article  CAS  PubMed  Google Scholar 

  50. Araki S, Omori Y, Lyn D, Singh RK, Meinbach DM, Sandman Y, et al. Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer. Cancer Res. 2007;67:6854–62.

    Article  CAS  PubMed  Google Scholar 

  51. Sarkar FH, Li Y. NF-κB: a potential target for cancer chemoprevention and therapy. Front Biosci. 2008;13:2950–9.

    Article  CAS  PubMed  Google Scholar 

  52. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer related inflammation. Nature. 2008;454:436–44.

    Article  CAS  PubMed  Google Scholar 

  53. Cho K, Song SB, Tung NH, Kim KE, Kim YH. Inhibition of TNF-a-mediated NF-kB transcriptional activity by dammarane-type ginsenosides from steamed flower buds of Panax ginseng in HepG2 and SK-Hep1 Cells. BiomolTher. 2014;22(1):55–61.

    CAS  Google Scholar 

  54. Letai A. Pharmacological manipulation of Bcl2 family members to control cell death. J Clin Invest. 2005;115(10):2648–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, et al. BCL2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK mediated mitochondrial apoptosis. Mol Cell. 2001;8(3):705–11.

    Article  CAS  PubMed  Google Scholar 

  56. Hou Q, Cymbalyuk E, Hsu HC, Xu M, Hsu YT. Apoptosis modulatory activities of transiently expressed Bcl2: roles in cytochrome c release and Bax regulation. Apoptosis. 2003;8:617–29.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang L, Yu J, Park BH, Kinzler KW, Vogelstein B. Role of Bax in the apoptotic response to anticancer agents. Science. 2000;290:989–92.

    Article  CAS  PubMed  Google Scholar 

  58. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, et al. Tumor suppressor p53 is a regulator of Bcl2 and bax gene expression in vitro and in vivo. Oncogene. 1994;9:1799–805.

    CAS  PubMed  Google Scholar 

  59. Van Lint P, Libert C. Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol. 2007;82:1375–81.

    Article  PubMed  Google Scholar 

  60. Wang WS, Chen PM, Wang HS, Liang WY, Su Y. Matrix metalloproteinase-7 increases resistance to Fas-mediated apoptosis and is a poor prognostic factor of patients with colorectal carcinoma. Carcinogenesis. 2006;27:1113–20.

    Article  CAS  PubMed  Google Scholar 

  61. Bauvois B. New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: outside-in signaling and relationship to tumor progression. Biochim Biophys Acta. 2012;1825:29–36.

    CAS  PubMed  Google Scholar 

  62. Aalinkeel R, Nair BB, Reynolds JL, Sykes DE, Mahajan SD, Chadha KC, et al. Overexpression of MMP-9 contributes to invasiveness of prostate cancer cell line LNCaP. Immunol Invest. 2011;40:447–64.

    Article  CAS  PubMed  Google Scholar 

  63. Gartner A. A conserved checkpoint pathway mediates DNA damage induced apoptosis and cell cycle arrest in C. elegans. Mol Cell. 2000;5:435–43.

    Article  CAS  PubMed  Google Scholar 

  64. Macleod KF. p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev. 1995;9:935–44.

    Article  CAS  PubMed  Google Scholar 

  65. Gartel AL, Radhakrishnan SK. Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res. 2005;65:3980–85.

    Article  CAS  PubMed  Google Scholar 

  66. Mirzayans R, Andrais B, Scott A, Murray D. New insights into p53 signaling and cancer cell response to DNA damage: implications for cancer therapy. J Biomed Biotechnol. 2012;170325.

  67. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–25.

    Article  CAS  PubMed  Google Scholar 

  68. Chang BD, Swift ME, Shen M, Fang J, Broude EV, Roninson IB. Molecular determinants of terminal growth arrest induced in tumor cells by chemotherapeutic agent. Proc Natl AcadSci USA. 2002;99:389–94.

    Article  CAS  Google Scholar 

  69. Han Z, Wei W, Dunaway S, Darnowski JW, Calabresi P, Sedivy J, et al. Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin. J Biol Chem. 2002;277:17154–60.

    Article  CAS  PubMed  Google Scholar 

  70. Kumar S. Regulation of caspase activation in apoptosis: implications in pathogenesis and treatment of disease. Clin Exp Pharmacol Physiol. 1999;26:295–303.

    Article  CAS  PubMed  Google Scholar 

  71. Woo HJ, Jun Do Y, Lee JY, Woo MH, Yang CH, Kim YH. Apoptogenic activity of 2alpha, 3alpha-dihydroxyurs-12-ene-28-oic acid from Prunella vulgaris var. lilacina is mediated via mitochondria-dependent activation of caspase cascade regulated by Bcl2 in human acute leukemia Jurkat T cells. J Ethnopharmacol. 2011;135:626–35.

    Article  CAS  PubMed  Google Scholar 

  72. Hengartner MO. The biochemistry of apoptosis. Nature. 2002;407:770–6.

    Article  Google Scholar 

  73. Shah S, Gapor A, Sylvester PW. Role of caspase-8 activation in mediating vitamin E-induced apoptosis in murine mammary cancer cells. Nutr Cancer. 2003;45:236–46.

    Article  CAS  PubMed  Google Scholar 

  74. Bouchier-Hayes L, Lartigue L, Newmeyer DD. Mitochondria: pharmacological manipulation of cell death. J Clin Invest. 2005;115:2640–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem. 1999;68:383–424.

    Article  CAS  PubMed  Google Scholar 

  76. Tsai SC, Lu CC, Lee CY, Lin YC, Chung JG, Kuo SC, et al. AKT serine/threonine protein kinase modulates bufalin-triggered intrinsic pathway of apoptosis in CAL 27 human oral cancer cells. Int J Oncol. 2012;41(5):1683–92.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author acknowledges the authorities of Bharathidasan University for providing the facilities to carry out this work. The author also acknowledges the Chair Person, School of Biological Sciences, Madurai Kamaraj University, Madurai, India for providing the facilities for cell cycle analysis.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajaram Rajendran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaikundamoorthy, R., Sundaramoorthy, R., Krishnamoorthy, V. et al. Marine steroid derived from Acropora formosa enhances mitochondrial-mediated apoptosis in non-small cell lung cancer cells. Tumor Biol. 37, 10517–10531 (2016). https://doi.org/10.1007/s13277-016-4947-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-4947-8

Keywords

Navigation