Skip to main content

Advertisement

Log in

Maspin mediates the gemcitabine sensitivity of hormone-independent prostate cancer

  • Original Article
  • Published:
Tumor Biology

Abstract

Androgen deprivation therapy has constituted the main treatment for prostate cancer; however, tumors ultimately progress to hormone-independent prostate cancer (HIPC), and suitable therapeutic strategies for HIPC are not available. Maspin, which is also known as mammary serine protease inhibitor, has been suggested to be a valuable focus for targeted cancer therapy. Specifically, maspin has been shown to be upregulated after androgen ablation therapy. Gemcitabine is used as a first-line therapy for metastatic castration-resistant prostate cancer, but its disease control rate is low. Furthermore, the role of maspin in the therapeutic efficacy of gemcitabine for HIPC remains unclear. The expression levels of maspin in PC-3 and DU145 cells were determined by real-time PCR and Western blotting. Furthermore, the expression of maspin was silenced using shRNA technology to generate maspin-KD cells. The cytotoxicity of gemcitabine to prostate cancer cells was assessed using 3-[4,5-dimethylthiazol-2-yl]-3,5-diphenyl tetrazolium bromide (MTT) assays, whereas flow cytometry analyses and annexin V-propidium iodide (PI) apoptosis assays were used to assess the ability of gemcitabine to induce apoptosis in maspin-KD and control cells. Additionally, the expression patterns of anti-apoptosis proteins (myeloid cell leukemia 1 (Mcl-1) and B cell lymphoma 2 (Bcl-2)) and pro-apoptosis proteins (Bcl-2-associated death promoter (Bad) and Bcl-2-associated X protein (Bax)) were determined by Western blotting. In this study, PC-3 cells were more resistant to gemcitabine administration than DU145 cells, which correlated with the higher expression levels of maspin observed in PC-3 cells. Furthermore, maspin knockdown enhanced gemcitabine-induced cell death, as evidenced by the increased number of apoptotic cells. Gemcitabine treatment upregulated the levels of anti-apoptosis proteins (Mcl-2 and Bcl-2) in both scrambled control and maspin-KD cells; however, the fold changes in Mcl-1 and Bcl-2 expression were larger in gemcitabine-treated scrambled control cells than in maspin-KD cells. Finally, our findings indicate for the first time that maspin may mediate the therapeutic efficacy of gemcitabine in HIPC. Our results demonstrate that maspin knockdown enhanced the sensitivity of androgen-independent prostate cancer cells to gemcitabine. Therefore, combining gemcitabine with a drug that targets maspin might constitute a valuable strategy for prostate cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics. CA Cancer J Clin. 2012;62:10–29.

    Article  PubMed  Google Scholar 

  2. Trewartha D, Carter K. Advances in prostate cancer treatment. Nat Rev Drug Discov. 2013;12:823–4.

    Article  CAS  PubMed  Google Scholar 

  3. Lonergan PE, Tindall DJ. Androgen receptor signaling in prostate cancer development and progression. J Carcinog. 2011;10:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang L, Davis JS, Zelivianski S, Lin FF, Schutte R, Davis TL, et al. Suppression of erbb-2 in androgen-independent human prostate cancer cells enhances cytotoxic effect by gemcitabine in an androgen-reduced environment. Cancer Lett. 2009;285:58–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gray SG, Baird AM, O’Kelly F, Nikolaidis G, Almgren M, Meunier A, et al. Gemcitabine reactivates epigenetically silenced genes and functions as a DNA methyltransferase inhibitor. Int J Mol Med. 2012;30:1505–11.

    CAS  PubMed  Google Scholar 

  6. Lim N, Lara Jr PN, Lau DH, Edelman MJ, Tanaka M, al-Jazayrly G, et al. Phase i trial of gemcitabine and paclitaxel in advanced solid tumors. Cancer Invest. 2003;21:7–13.

    Article  CAS  PubMed  Google Scholar 

  7. Hertel LW, Boder GB, Kroin JS, Rinzel SM, Poore GA, Todd GC, et al. Evaluation of the antitumor activity of gemcitabine (2′,2′-difluoro-2′-deoxycytidine). Cancer Res. 1990;50:4417–22.

    CAS  PubMed  Google Scholar 

  8. Lee JL, Ahn JH, Choi MK, Kim Y, Hong SW, Lee KH, et al. Gemcitabine-oxaliplatin plus prednisolone is active in patients with castration-resistant prostate cancer for whom docetaxel-based chemotherapy failed. Br J Cancer. 2014;110:2472–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. el-Rayes BF, Shields AF, Vaitkevicius V, Philip PA. Developments in the systemic therapy of pancreatic cancer. Cancer Invest. 2003;21:73–86.

    Article  CAS  PubMed  Google Scholar 

  10. Morant R, Bernhard J, Maibach R, Borner M, Fey MF, Thurlimann B, et al. Response and palliation in a phase ii trial of gemcitabine in hormone-refractory metastatic prostatic carcinoma. Swiss group for clinical cancer research (sakk). Ann Oncol. 2000;11:183–8.

    Article  CAS  PubMed  Google Scholar 

  11. Di Lorenzo G, Autorino R, Giuliano M, Morelli E, Giordano A, Napodano G, et al. Phase ii trial of gemcitabine, prednisone, and zoledronic acid in pretreated patients with hormone refractory prostate cancer. Urology. 2007;69:347–51.

    Article  PubMed  Google Scholar 

  12. Berardi R, Morgese F, Onofri A, Mazzanti P, Pistelli M, Ballatore Z, et al. Role of maspin in cancer. Clin Transl Med. 2013;2:8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dietmaier W, Bettstetter M, Wild PJ, Woenckhaus M, Rummele P, Hartmann A, et al. Nuclear maspin expression is associated with response to adjuvant 5-fluorouracil based chemotherapy in patients with stage iii colon cancer. Int J Cancer. 2006;118:2247–54.

    Article  CAS  PubMed  Google Scholar 

  14. Sabbatini R, Federico M, Morselli M, Depenni R, Cagossi K, Luppi M, et al. Detection of circulating tumor cells by reverse transcriptase polymerase chain reaction of maspin in patients with breast cancer undergoing conventional-dose chemotherapy. J Clin Oncol. 2000;18:1914–20.

    CAS  PubMed  Google Scholar 

  15. Marioni G, Koussis H, Gaio E, Giacomelli L, Bertolin A, D’Alessandro E, et al. Maspin’s prognostic role in patients with advanced head and neck carcinoma treated with primary chemotherapy (carboplatin plus vinorelbine) and radiotherapy: preliminary evidence. Acta Otolaryngol. 2009;129:786–92.

    Article  CAS  PubMed  Google Scholar 

  16. Riddick AC, Shukla CJ, Pennington CJ, Bass R, Nuttall RK, Hogan A, et al. Identification of degradome components associated with prostate cancer progression by expression analysis of human prostatic tissues. Br J Cancer. 2005;92:2171–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Machtens S, Serth J, Bokemeyer C, Bathke W, Minssen A, Kollmannsberger C, et al. Expression of the p53 and maspin protein in primary prostate cancer: correlation with clinical features. Int J Cancer. 2001;95:337–42.

    Article  CAS  PubMed  Google Scholar 

  18. Zou Z, Zhang W, Young D, Gleave MG, Rennie P, Connell T, et al. Maspin expression profile in human prostate cancer (cap) and in vitro induction of maspin expression by androgen ablation. Clin Cancer Res. 2002;8:1172–7.

    CAS  PubMed  Google Scholar 

  19. Dong D, Ni M, Li J, Xiong S, Ye W, Virrey JJ, et al. Critical role of the stress chaperone grp78/bip in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development. Cancer Res. 2008;68:498–505.

    Article  CAS  PubMed  Google Scholar 

  20. Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Kohler K, et al. Membrane nanotubes physically connect t cells over long distances presenting a novel route for hiv-1 transmission. Nat Cell Biol. 2008;10:211–9.

    Article  CAS  PubMed  Google Scholar 

  21. Lien YC, Wang W, Kuo LJ, Liu JJ, Wei PL, Ho YS, et al. Nicotine promotes cell migration through alpha7 nicotinic acetylcholine receptor in gastric cancer cells. Ann Surg Oncol. 2011.

  22. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  23. Chiou JF, Tai CJ, Huang MT, Wei PL, Wang YH, An J, et al. Glucose-regulated protein 78 is a novel contributor to acquisition of resistance to sorafenib in hepatocellular carcinoma. Ann Surg Oncol. 2010;17:603–12.

    Article  PubMed  Google Scholar 

  24. Chang YJ, Chiu CC, Wu CH, An J, Wu CC, Liu TZ, et al. Glucose-regulated protein 78 (grp78) silencing enhances cell migration but does not influence cell proliferation in hepatocellular carcinoma. Ann Surg Oncol. 2010;17:1703–9.

    Article  PubMed  Google Scholar 

  25. Tai CJ, Wang JW, Su HY, Wang CK, Wu CT, Lien YC, et al. Glucose-regulated protein 94 modulates the therapeutic efficacy to taxane in cervical cancer cells. Tumour Biol. 2014;35:403–10.

    Article  CAS  PubMed  Google Scholar 

  26. Kuo LJ, Huang CY, Cheng WL, Hung CS, Wu CT, Lin FY, et al. Glucose-regulated protein 78 mediates the anticancer efficacy of shikonin in hormone-refractory prostate cancer cells. Tumour Biol. 2015;36(7):70–0.

    Article  CAS  Google Scholar 

  27. Cornelissen M, Philippe J, De Sitter S, De Ridder L. Annexin V expression in apoptotic peripheral blood lymphocytes: an electron microscopic evaluation. Apoptosis. 2002;7:41–7.

    Article  CAS  PubMed  Google Scholar 

  28. Mini E, Nobili S, Caciagli B, Landini I, Mazzei T. Cellular pharmacology of gemcitabine. Ann Oncol. 2006;17 Suppl 5:v7–v12.

    Article  PubMed  Google Scholar 

  29. Moysan E, Bastiat G, Benoit JP. Gemcitabine versus modified gemcitabine: a review of several promising chemical modifications. Mol Pharm. 2013;10:430–44.

    Article  CAS  PubMed  Google Scholar 

  30. Laufman LR, Spiridonidis CH, Pritchard J, Roach R, Zangmeister J, Larrimer N, et al. Monthly docetaxel and weekly gemcitabine in metastatic breast cancer: a phase ii trial. Ann Oncol. 2001;12:1259–64.

    Article  CAS  PubMed  Google Scholar 

  31. Pan X, Arumugam T, Yamamoto T, Levin PA, Ramachandran V, Ji B, et al. Nuclear factor-kappab p65/rela silencing induces apoptosis and increases gemcitabine effectiveness in a subset of pancreatic cancer cells. Clin Cancer Res. 2008;14:8143–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang J, Jia R, Zhang Y, Xu X, Song X, Zhou Y, et al. The role of bax and bcl-2 in gemcitabine-mediated cytotoxicity in uveal melanoma cells. Tumour Biol. 2014;35:1169–75.

    Article  CAS  PubMed  Google Scholar 

  33. Yin S, Li X, Meng Y, Finley Jr RL, Sakr W, Yang H, et al. Tumor-suppressive maspin regulates cell response to oxidative stress by direct interaction with glutathione s-transferase. J Biol Chem. 2005;280:34985–96.

    Article  CAS  PubMed  Google Scholar 

  34. McDonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LW, Hsieh JT, et al. Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res. 1992;52:6940–4.

    CAS  PubMed  Google Scholar 

  35. Akagi H, Higuchi H, Sumimoto H, Igarashi T, Kabashima A, Mizuguchi H, et al. Suppression of myeloid cell leukemia-1 (mcl-1) enhances chemotherapy-associated apoptosis in gastric cancer cells. Gastric Cancer. 2013;16:100–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from Taipei Medical University—Shuang Ho Hospital (104TMU-SHH-08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-Jeng Tai or Ming-Te Huang.

Ethics declarations

Conflict of Interest

None

Additional information

Chien-Yu Huang and Yu-Jia Chang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CY., Chang, YJ., Luo, SD. et al. Maspin mediates the gemcitabine sensitivity of hormone-independent prostate cancer. Tumor Biol. 37, 4075–4082 (2016). https://doi.org/10.1007/s13277-015-4083-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4083-x

Keywords

Navigation