Skip to main content

Advertisement

Log in

Flight and engine control laws integration based on robust control and energy principles

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

Integration aspects of flight and engine control laws in the context of the longitudinal motion control of commercial aircraft are the concern in this paper. The application of the entailing concepts in the scope of an energy-based multivariable control design is developed along with a case study using dedicated aircraft and engine models. It consists of an enhancement of the Total Energy Control System (TECS), which is modified with respect to the following aspects: (a) the inclusion of engine feedback variables to its core control loop, which is extended and improved with respect to the command interface from the throttle control channel, and (b) the use of a two degree of freedom linear control law based on independent multivariable gain scheduled feed-forward and feedback controllers. Additionally, a systematic design framework is proposed to account for the robustness of stability and performance of the control law in face of plant uncertainties, as well as to allow the evaluation and integration of engine restrictions already in the early design stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Source material for aircraft model is available at: http://www.faulttolerantcontrol.nl/index.html; - Source material for engine model is available at: https://github.com/nasa/T-MATS.

Code availability

Not applicable.

Abbreviations

\(\dot{E}\) :

Specific total energy rate

g :

Gravitational constant

\(\dot{L}\) :

Specific total energy distribution rate

\(N_1\) :

Low pressure assembly engine shaft speed

\(N_2\) :

High pressure assembly engine shaft speed

\(P_{s3}\) :

Static pressure at the exit of the engine high pressure compressor

\(T_{45}\) :

Temperature at the exit of the engine high pressure turbine

q :

Aircraft pitch rate

V :

Aircraft true airspeed

\(W_f\) :

Engine fuel flow rate

\(\gamma\) :

Aircraft flight path angle

\(\theta\) :

Aircraft pitch angle

T :

Engine thrust

\(\delta _{elev}\) :

Elevator deflection

References

  1. Lambregts, A.: Vertical flight path and speed control autopilot design using total energy principles. In: Guidance and Control Conference, p. 2239 (1983). https://doi.org/10.2514/6.1983-2239

  2. Lambregts, A.A.: Fundamentals of FBW augmented manual control (2005). https://doi.org/10.4271/2005-01-3419

    Article  Google Scholar 

  3. Lambregts, A.: Advances in aerospace guidance navigation and control. In: TECS generalized airplane control system design - an update, pp. 503–534. Springer (2013). https://doi.org/10.1007/978-3-642-38253-6_30

    Chapter  Google Scholar 

  4. Lambregts, A.: Integrated system design for flight and propulsion control using total energy principles. In: Aircraft Design, Systems and Technology Meeting (1983). https://doi.org/10.2514/6.1983-2561

  5. Shaw, P., Rock, S., Fisk, W.: Design methods for integrated control systems. Air Force Wright Aeronautical Laboratories Report AFWAL-TR-88-2061, 91–93 (1988).

  6. Smith, K., Kerr, W., Hartmann, G.: Design methods for integrated control systems. Air Force Wright Aeronautical Laboratories Report AFWAL-TR-86-2103 (1986).

  7. Mattern, D., Garg, S., Bullard, R.: Integrated flight/propulsion control system design based on a decentralized, hierarchical approach. In: Guidance, Navigation and Control Conference, p. 3519 (1989). https://doi.org/10.2514/6.1989-3519

  8. Garg, S., Ouzts, P.J., Lorenzo, C.F., Mattern, D.L.: IMPAC-An integrated methodology for propulsion and airframe control. In: 1991 American Control Conference, pp. 747–754 (1991). https://doi.org/10.23919/ACC.1991.4791474. IEEE

  9. Garg, S., Mattern, D.L., Bullard, R.E.: Integrated flight/propulsion control system design based on a centralized approach. J. Guid. Control Dyn. 14(1), 107–116 (1991). https://doi.org/10.2514/3.20611

    Article  Google Scholar 

  10. Voth, C., Ly, U.-L.: Design of a total energy control autopilot using constrained parameter optimization. J. Guid. Control Dyn. 14(5), 927–935 (1991). https://doi.org/10.2514/3.20733

    Article  Google Scholar 

  11. Bruce, K., Kelly, J., Person, L. JR: NASA B737 flight test results of the total energy control system. In: Astrodynamics Conference, p. 2143 (1987). https://doi.org/10.2514/6.1986-2143

  12. Lambregts, A.A.: THCS generalized airplane control system design. In: 2013 CEAS Conference on Guidance, Navigation and Control, Delft, The Netherlands (2013).

  13. Lamp, M., Luckner, R.: The total energy control concept for a motor glider. Advances in aerospace guidance, navigation and control, pp. 483–502. Springer (2013). https://doi.org/10.1007/978-3-642-38253-6_29

    Book  Google Scholar 

  14. Karlsson, E., Schatz, S.P., Baier, T., Dörhöfer, C., Gabrys, A., Hochstrasser, M., Krause, C., Lauffs, P.J., Mumm, N.C., Nürnberger, K., et al.: Development of an automatic flight path controller for a DA42 general aviation aircraft. In: Advances in Aerospace Guidance, Navigation and Control, pp. 121–139 (2018). https://doi.org/10.1007/978-3-319-65283-2_7

  15. Chakraborty, I., Ahuja, V., Comer, A., Mulekar, O.: Development of a modeling, flight simulation, and control analysis capability for novel vehicle configurations. AIAA Aviation 2019 Forum. (2019). https://doi.org/10.2514/6.2019-3112

    Article  Google Scholar 

  16. Chakraborty, I., Mishra, A.A.: Total energy based flight control system design for a lift-plus-cruise urban air mobility concept. In: AIAA Scitech 2021 Forum, p. 1899 (2021). https://doi.org/10.2514/6.2021-1899

  17. Richter, H.: Advanced control of turbofan engines. Springer, New York (2011). https://doi.org/10.1007/978-1-4614-1171-0

    Book  Google Scholar 

  18. Jaw, L., Mattingly, J.: Aircraft engine controls. AIAA Inc., Reston (2009). https://doi.org/10.2514/4.867057

    Book  Google Scholar 

  19. Garg, S.: Fundamentals of aircraft turbine engine control. Technical report, Controls and Dynamics Branch, Glenn Research Center, NASA Aeronautics and Exploration Mission Programs, NASA TM 2011-216939-2011 (2012).

  20. Csank, J., May, R., Litt, J., Guo, T.-H.: Control design for a generic commercial aircraft engine. In: 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p. 6629 (2010). https://doi.org/10.2514/6.2010-6629

  21. Spang, H.A., III., Brown, H.: Control of jet engines. Control Eng. Pract. 7(9), 1043–1059 (1999). https://doi.org/10.1016/S0967-0661(99)00078-7

    Article  Google Scholar 

  22. Kreisselmeier, G.: Struktur mit zwei Freiheitsgraden/two-degree-of-freedom control structure. Automatisierungstechnik 47(6), 266–269 (1999). https://doi.org/10.1524/auto.1999.47.6.266

    Article  Google Scholar 

  23. Kienitz, K.H., Kadirkamanathan, V.: New Insights for Applications of Kreiselmeier’s Structure in Robust and Fault Tolerant Control. In: IEEE Aerospace Conference (2017). https://doi.org/10.1109/AERO.2017.7943797

  24. Skogestad, S., Postlethwaite, I.: Multivariable feedback control: analysis and design. Wiley, New York (2007)

    MATH  Google Scholar 

  25. Faleiro, L., Lambregts, A.: Analysis and tuning of a total energy control system control law using eigenstructure assignment. Aerosp. Sci. Technol. 3(3), 127–140 (1999). https://doi.org/10.1016/S1270-9638(99)80037-6

    Article  MATH  Google Scholar 

  26. Balas, G., Ganguli, S.: A TECS alternative using robust multivariable control. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, p. 4022 (2001). https://doi.org/10.2514/6.2001-4022

  27. Chen, S.-W., Chen, P.-C., Yang, C.-D., Jeng, Y.-F.: Total energy control system for helicopter flight/propulsion integrated controller design. J. Guid. Control Dyn. 30(4), 1030–1039 (2007). https://doi.org/10.2514/1.26670

    Article  Google Scholar 

  28. Lehtomaki, N., Stein, G., Wall, J. JR: Multivariable prefilter design for command shaping. In: 17th Fluid Dynamics, Plasma Dynamics, and Lasers Conference, p. 1829 (1984). https://doi.org/10.2514/6.1984-1829

  29. Vidyasagar, M.: Normalised coprime factorizations for nonstrictly proper systems. IEEE Trans. Automat. Contr. 33(3), 300–301 (1988). https://doi.org/10.1109/9.408

    Article  MATH  Google Scholar 

  30. Blight, J.D., Lane Dailey, R., Gangsaas, D.: Practical control law design for aircraft using multivariable techniques. Int. J. Control. 59(1), 93–137 (1994). https://doi.org/10.1080/00207179408923071

    Article  Google Scholar 

  31. Gangsaas, D., Hodgkinson, J., Harden, C., Saeed, N., Chen, K.: Multidisciplinary control law design and flight test demonstration on a business jet. In: AIAA Guidance, Navigation and Control Conference and Exhibit, p. 6489 (2008). https://doi.org/10.2514/6.2008-6489

  32. Smaili, M., Breeman, J., Lombaerts, T., Stroosma, O.: A simulation benchmark for aircraft survivability assessment. In: Proceedings of the International Congress of Aeronautical Sciences, vol. 9 (2008)

  33. Smaili, H., Breeman, J., Lombaerts, T., Joosten, D.: Recover: a benchmark for integrated fault tolerant flight control evaluation. In: Fault tolerant flight control, pp. 171–221. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11690-2_6

    Chapter  Google Scholar 

  34. Hanke, C.R.: The Simulation of a Large Jet Transport Aircraft. Volume 1 - Mathematical Model. Technical report, NASA, NASA-CR-1756 (1971).

  35. Hanke, C.R., Nordwall, D.R.: The simulation of a jumbo jet transport aircraft. Volume 2: Modeling data. Technical report, NASA, NASA-CR-114494 (1970).

  36. Chapman, J.W., Lavelle, T.M., May, R., Litt, J.S., Guo, T.-H.: Propulsion system simulation using the toolbox for the modeling and analysis of thermodynamic systems (t mats). In: 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, p. 3929 (2014). https://doi.org/10.2514/6.2014-3929

  37. Jones, T.: Statistical data for the boeing-747-400 aircraft in commercial operations. US Department of Transportation Federal Aviation Administration Office of Aviation Research, Washington (2005).

    Google Scholar 

  38. Helmersson, A., et al.: Robust flight control design challenge, problem formulation and manual: The research civil aircraft model (rcam). Technical Report, GARTEUR/TP-088-03 (1997).

Download references

Acknowledgements

The second author acknowledges partial support through CNPq Grant \(\# 306900/2018-1\) (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Giusti Degaspare.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose

Ethical approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Degaspare, T.G., Kienitz, K.H. Flight and engine control laws integration based on robust control and energy principles. CEAS Aeronaut J 13, 905–921 (2022). https://doi.org/10.1007/s13272-022-00599-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-022-00599-x

Keywords

Navigation