Skip to main content
Log in

Fluid–structure coupling in time domain for dynamic stall using purely Lagrangian vortex method

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

This paper presents the purely fast Lagrangian vortex method (FLVM) for the simulation of the external incompressible flows past heaving and pitching bodies with high-frequency oscillation. The Nascent vortex element is introduced to the flow field to retain the Lagrangian characteristics of the solver. The viscous effect is modeled using a core spreading method coupled with the splitting and merging spatial adaptation scheme. The particle’s velocity is calculated using Biot–Savart formulation. To accelerate computation, a fast multipole method (FMM) is employed. The validity of FLVM solver is verified by temporal and spatial convergence studies for the case of flows past an impulsively started cylinder at the Reynolds numbers ranging from 50 to 9500. The accuracy of FLVM is then confirmed for the simulation of flows around the pitching flat plate and oscillating airfoil. The time history of drag and lift coefficients and the vorticity contours show a good agreement with those reported in literature. Furthermore, the FLVM is employed to determine the flutter derivatives and flutter speed of an oscillating flat plate. Results are compared with theoretical solutions based on Theodorsen’s function. In general, the results agree well with those obtained by the inviscid theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Scanlan, R.H., Tomo, J.: Airfoil and bridge deck flutter derivatives. J. Eng. Mech. Div. 97(6), 1717–1737 (1971)

    Article  Google Scholar 

  2. Larsen, A.: Prediction of aeroelastic stability of suspension bridges during erection. J. Wind Eng. Ind. Aerodyn. 72, 265–274 (1997)

    Article  Google Scholar 

  3. Gunawan, L., Hadyan, H., Muhammad, H.: Measurements of flutter derivatives of a bridge deck sectional model. J. KONES 20, 107–116 (2013)

    Google Scholar 

  4. Albano, L., William, P.R.: A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows. AIAA J. 7(2), 279–285 (1969)

    Article  MATH  Google Scholar 

  5. Edwards, J.W., Bennett, R.M., Whitlow, W., Jr., Seidel, D.A.: Time-marching transonic flutter solutions including angle-of-attack effects. J. Aircr. 20(11), 899–906 (1983)

    Article  Google Scholar 

  6. Alonso, J., Antony J., Fully-implicit time-marching aeroelastic solutions. In: 32nd Aerospace Sciences Meeting and Exhibit (1994)

  7. Prananta, B.B., Hounjet, M.H.L., Zwaan, R.J.: Two-dimensional transonic aeroelastic analysis using thin-layer Navier-Stokes method. J. Fluids Struct. 12(6), 655–676 (1998)

    Article  Google Scholar 

  8. Hall, K.C., Thomas, J.P., Dowell, E.H.: Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows. AIAA J. 38(10), 1853–1862 (2000)

    Article  Google Scholar 

  9. Bohbot, J., Julien G., Stephane T., Denis D.: Computation of the flutter boundary of an airfoil with a parallel Navier-Stokes solver. In: 39th Aerospace Sciences Meeting and Exhibit, p. 572 (2001)

  10. Tang, D., Dowell, E.H.: Experimental and theoretical study on aeroelastic response of high-aspect-ratio wings. AIAA J. 39(8), 1430–1441 (2012)

    Article  Google Scholar 

  11. Liu, F., Cai, J., Zhu, Y., Tsai, H.M., Wong, A.S.F.: Calculation of wing flutter by a coupled fluid-structure method. J. Aircr. 38(2), 334–342 (2001)

    Article  Google Scholar 

  12. Chen, X., Zha, G., Hu, Z., Yang, M.T.: Flutter prediction based on fully coupled fluid-structural interactions. In: 9th National Turbine Engine High Cycle Fatigue Conference (2004)

  13. Badcock, K.J., Woodgate, M.A., Richards, B.E.: Direct aeroelastic bifurcation analysis of a symmetric wing based on the Euler equations. J. Aircr. 42(3), 731–737 (2005)

    Article  Google Scholar 

  14. Badcock, K.J., Woodgate, M.A.: Bifurcation prediction of large-order aeroelastic models. AIAA J. 48(6), 1037–1046 (2010)

    Article  Google Scholar 

  15. Badcock, K.J., Timme, S., Marques, S., Khodaparast, H., Prandina, M., Mottershead, J.E., Woodgate, M.A.: Transonic aeroelastic simulation for instability searches and uncertainty analysis. Prog. Aerosp. Sci. 47(5), 392–423 (2011)

    Article  Google Scholar 

  16. Timme, S., Marques, S., Badcock, K.J.: Transonic aeroelastic stability analysis using a Kriging-based Schur complement formulation. AIAA J. 49(6), 1202–1213 (2011)

    Article  Google Scholar 

  17. Wang, K. G., Beran, P. S., Cao, S.: Adjoint-based mesh adaptation for direct flutter prediction. In: International Forum on Aeroelasticity and Structural Dynamics (2017)

  18. Frandsen, J., McRobie, F.A.: Finite element simulation of wind-induced bridge motion. In: Proceedings of the International Symposium on Computational Methods for Fluid-Structure Interaction, Cambridge (1999)

  19. Schulz, K.W., Kallinderis, Y.: Unsteady flow structure interaction for incompressible flows using deformable hybrid grids. J. Comput. Phys. 143, 569–597 (1998)

    Article  MATH  Google Scholar 

  20. Larsen, A., Walther, J.H.: A two dimensional discrete vortex method for bridge aerodynamics applications. J. Wind Eng. Ind. Aerodyn. 67, 183–193 (1997)

    Google Scholar 

  21. Morgenthal, G.: Aerodynamic analysis of structures using high-resolution vortex particle methods. Dissertation, University of Cambridge, Cambridge, United Kingdom (2002)

  22. Koumoutsakos, P., Leonard, A.: High-resolution simulations of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech. 296, 1–38 (1995)

    Article  MATH  Google Scholar 

  23. Ploumhans, P., Winckelmans, G.S.: Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry. J. Comput. Phys. 165(2), 354–406 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ploumhans, P., Winckelmans, G.S., Salmon, J.K., Leonard, A., Warren, M.S.: Vortex methods for direct numerical simulation of three-dimensional bluff body flows: application to the sphere at Re= 300, 500, and 1000. J. Comput. Phys. 178(2), 427–463 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kamemoto, K.: On contribution of advanced vortex element methods toward virtual reality of unsteady vortical flows in the new generation of CFD. J. Braz. Soc. Mech. Sci. Eng. 26(4), 368–378 (2004)

    Article  Google Scholar 

  26. Cottet, G.-H., Poncet, P.: Advances in direct numerical simulations of 3D wall-bounded flows by vortex-in-cell methods. J. Comput. Phys. 193(1), 136–158 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yokota, R., Sheel, T.K., Obi, S.: Calculation of isotropic turbulence using a pure Lagrangian vortex method. J. Comput. Phys. 226(2), 1589–1606 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Morgenthal, G., Walther, J.H.: An immersed interface method for the vortex-in-cell algorithm. Comput. Struct. 85(11–14), 712–726 (2007)

    Article  MATH  Google Scholar 

  29. Huang, M.J., Su, H.X., Chen, L.C.: A fast resurrected core-spreading vortex method with no-slip boundary conditions. J. Comput. Phys. 228(6), 1916–1931 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Huang, C.J., Huang, M.J.: A vortex method suitable for long time simulations of flow over body of arbitrary geometry. Comput. Fluids 74, 1–12 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hammer, P., Altman, A., Eastep, F.: Validation of a discrete vortex method for low Reynolds number unsteady flows. AIAA J. 52(3), 643–649 (2014)

    Article  Google Scholar 

  32. Mimeau, C., Cottet, G.H., Mortazavi, I.: Direct numerical simulations of three-dimensional flows past obstacles with a vortex penalization method. Comput. Fluids 136, 331–347 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dung, D.V., Zuhal, L.R., Muhammad, H.: Two-dimensional fast Lagrangian vortex method for simulating flows around a moving boundary. J. Mech. Eng. 12, 31–46 (2015)

    Google Scholar 

  34. Zuhal, L.R., Febrianto, E.V., Dung, D.V.: Flutter speed determination of two degree of freedom model using discrete vortex method. Appl. Mech. Mater. 660, 639–643 (2014)

    Article  Google Scholar 

  35. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hrycak, T., Rokhlin, V.: An improved fast multipole algorithm for potential fields. SIAM J. Sci. Stat. Comput. 19, 1804–1826 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Buard, R., Coutanceau, M.: The early stage of development of the wake behind an impulsively started cylinder for 40 < Re < 104. J. Fluid Mech. 101, 583–607 (1980)

    Article  Google Scholar 

  38. Greengard, C.: The core-spreading vortex method approximations the wrong equation. J. Comput. Phys. 61, 345–348 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rossi, L.: Resurrecting core-spreading vortex methods: a new scheme that is both deterministic and convergent. SIAM J. Sci. Comput. 17, 370–397 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Koumoutsakos, P., Leonard, A., Pepin, F.: Boundary conditions for viscous vortex methods. J. Comput. Phys. 113, 52–61 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  41. Nagao, F., Utsunomiya, H., Murata, S.: Improvement of pitching moment estimation of an oscillating body by discrete vortex method. J. Wind Eng. Ind. Aerodyn. 67, 337–347 (1997)

    Article  Google Scholar 

  42. Theodorsen, T., Mutchler, W.H.: General theory of aerodynamic instability and the mechanism of flutter. NACA Technical Report 496, United States (1935)

  43. Walther, H.J., Larsen, A.: Two dimensional discrete vortex method for application to bluff body aerodynamics. J. Wind Eng. Ind. Aerodyn. 67, 183–193 (1997)

    Google Scholar 

  44. Kim, Y.C.: Vortex-in-cell method combined with a boundary element method for incompressible viscous flow analysis. Int. J. Numer. Methods Fluids 69, 1567–1583 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Taneda, S.: Studies on Wake Vortices (III). Experimental investigation of the wake behind a sphere at low Reynolds number. Rep. Res. Inst. Appl. Mech. 4, 99–105 (1956)

    Google Scholar 

  46. Zhang, H.Q., Fey, U., Noack, B.R., König, M., Eckelmann, H.: On the transition of the cylinder wake. Phys. Fluids 7(4), 779–794 (1995)

    Article  Google Scholar 

  47. Barkley, D., Henderson, R.D.: Three-dimensional floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215–241 (1996)

    Article  MATH  Google Scholar 

  48. Williamson, C.H.K.: The natural and forced formation of spot-like vortex dislocations in the transition of a wake. J. Fluid Mech. 243, 393–441 (1992)

    Article  Google Scholar 

  49. Thompson, M., Hourigan, K., Sheridan, J.: Three-dimensional instabilities in the wake of a circular cylinder. Exp. Thermal Fluid Sci. 12(2), 190–196 (1996)

    Article  Google Scholar 

  50. Rasmussen, J.T., Cottet, G.H., Walther, J.H.: A multiresolution remeshed vortex-in-cell algorithm using patches. J. Comput. Phys. 230, 6742–6755 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Eldredge, J.D.: Numerical simulation of the fluid dynamics of 2D rigid body motion with the vortex particle method. J. Comput. Phys. 221(2), 626–648 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. Kinsey, T., Dumas, G.: Parametric study of an oscillating airfoil in a power-extraction regime. AIAA J. 46(6), 1318–1330 (2008)

    Article  Google Scholar 

  53. Ramesh, K., Gopalarathnam, A., Granlund, K., Ol, M., Edwards, J.: Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shedding. J. Fluid Mech. 751, 500 (2014)

    Article  MathSciNet  Google Scholar 

  54. Yu, M., Wang, Z.J., Hu, H.: High fidelity numerical simulation of airfoil thickness and kinematics effects on flapping airfoil propulsion. J. Fluids Struct. 42, 166–186 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viet Dung Duong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duong, V.D., Zuhal, L.R. & Muhammad, H. Fluid–structure coupling in time domain for dynamic stall using purely Lagrangian vortex method. CEAS Aeronaut J 12, 381–399 (2021). https://doi.org/10.1007/s13272-021-00511-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-021-00511-z

Keywords

Navigation