Skip to main content

Advertisement

Log in

Paths to alternative fuels for aviation

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

Almost the complete amount of jet fuel available on the global market is produced from fossil crude oil being an exhaustible raw material. Furthermore its use is inherently connected with emissions of the greenhouse gas CO2. To cope with this, several processes for the production of alternative aviation fuels were developed including the use of biomass as a renewable feedstock. Since biomass from cultivation farming is in competition with food and fodder production, the preferred raw material would be residues from agriculture and forestry or municipal waste, also microalgae can be used. Independent of the raw material, the conversion of biogenic feedstock into alternative jet fuel is based on microbial, thermal and/or chemical breakdown of larger (bio)-molecules into smaller ones, followed by the catalytic formation of fuel molecules and hydrogenation. An overview on the production of different alternative bio-based jet fuels is given including a survey about producers and capacities, focusing on already certificated bio-based jet fuels. In addition to that, a comparison of fundamental combustion properties between Jet A-1 and different alternative jet fuels is presented: Laminar burning velocities and ignition delay times, each measured for two synthetic jet fuels based on fossil resources (coal-to-liquid—CtL and gas-to-liquid—GtL) as well as for two biofuels (farnesane and an Alcohol-to-Jet fuel—AtJ). Measurements of the burning velocities were performed at a preheat temperature of 473 K and pressures of 1 and 3 bar by variation of the fuel–air-equivalence ratios φ. Ignition delay times were determined for φ-values of 0.5, 1.0, and 2.0, at an initial pressure of about 16 bar and temperatures ranging between 800 and 1700 K. It turns out that with respect to the characteristic combustion properties tested the considered alternative fuels have a combustion behavior similar to Jet A-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lee, D.S., Fahey, D.W., Forster, P.M., Newton, P.J., Wit, R.C.N.: Aviation and global climate change in the 21st century. Atoms. Environ. 43(22–23), 3520–3537 (2009)

    Article  Google Scholar 

  2. Blakey, S., Rye, L., Wilson, C.W.: Aviation gas turbine alternative fuels: a review. Proc. Comb. Inst. 33(2), 2863–2885 (2011)

    Article  Google Scholar 

  3. Braun-Unkhoff, M., Riedel, U., Wahl, C.: About the emissions of alternative jet fuels. CEAS Aeronaut. J. 8(1), 167–180 (2016)

    Article  Google Scholar 

  4. European Commission: 2 million tons per year: A performing biofuels supply chain for EU aviation. https://ec.europa.eu/energy/sites/ener/files/20130911_a_performing_biofuels_supply_chain.pdf (2013). Accessed 28 Nov 2017

  5. Wang, W.-C., Tao, L.: Bio-jet fuel conversion technologies. Renew. Sust. Energy Rev. 53, 801–822 (2016)

    Article  Google Scholar 

  6. SkyNRG: Track record—SAF flights. http://skynrg.com/saf-flights/. Accessed 28 Nov 2017

  7. IATA: Fact sheet—alternative fuels. http://www.iata.org/pressroom/facts_figures/fact_sheets/Documents/fact-sheet-alternative-fuels.pdf (2017). Accessed 28 Nov 2017

  8. CAAFI: SAJF offtake agreements. http://www.caafi.org/activities/pdf/Airline_Offtake_Slides_Oct2017.pdf (2017). Accessed 28 Nov 2017

  9. Gevo: News release—on fly green day, eight airlines fly with Gevo’s Jet Fuel from O’Hare. http://ir.gevo.com/phoenix.zhtml?c=238618&p=irol-newsArticle&ID=2315423 (2017). Accessed 28 Nov 2017

  10. Lane J.: 9 Fly with Gevo’s jet fuel from O’Hare on “Fly Green Day”. Biofuels Digest. http://www.biofuelsdigest.com/bdigest/2017/11/08/9-fly-with-gevos-jet-fuel-from-ohare-on-fly-green-day/ (2017). Accessed 28 Nov 2017

  11. United Airlines: Alternative fuels. https://www.united.com/web/en-US/content/company/globalcitizenship/environment/alternative-fuels.aspx (2017). Accessed 28 Nov 2017

  12. Lufthansa Group: Sustainable alternative fuels. https://www.lufthansagroup.com/en/responsibility/climate-and-environmental-responsibility/fuel-consumption-and-emissions/alternative-fuels.html (2017). Accessed 28 Nov 2017

  13. SkyNRG: SkyNRG corporate program. http://skynrg.com/klmcorporatebiofuelprogramme. Accessed 28 Nov 2017

  14. Nara: Forest-powered flight heads to Washington, D.C. https://nararenewables.org/2016/11/15/forest-powered-flight-heads-to-washington-d-c/ (2016). Accessed 28 Nov 2017

  15. Cathay Pacific: Sustainable fuels. http://downloads.cathaypacific.com/cx/aboutus/sd/2016/climate-change/sustainable-fuels/index.html (2016). Accessed 28 Nov 2017

  16. Zaimes, G., Borkowski, M., Khanna, V.: Life-cycle environmental impacts of biofuels and Co-products. In: Gupta, V.K., Tuohy, M.G. (eds.) Biofuel technologies—recent developments, pp. 473–477. Springer, Berlin (2013)

    Google Scholar 

  17. EUALGAE: The European network for Algal-Bioproducts. http://eualgae.eu/ (2017). Accessed 28 Nov 2017

  18. Total: From microalgae to molecules of interest: focus on AlgaePARC. https://www.total.com/en/energy-expertise/projects/bioenergies/algaeparc. Accessed 28 Nov 2017

  19. Zschocke, A., Scheuermann, S., Ortner J.: High biofuel blends in aviation (HBBA). http://www.hbba.eu (2015). Accessed 28 Nov 2017

  20. Neuling, U., Kaltschmitt, M.: Conversion routes for production of biokerosene—status and assessment. Biomass Conv. Bioref. 5, 367–385 (2015)

    Article  Google Scholar 

  21. Braun-Unkhoff, M., Riedel, U.: Alternative fuels in aviation. CEAS Aeronaut. J. 6(1), 83–93 (2015)

    Article  Google Scholar 

  22. FAA Aviation Safety: Engine fuel and control—semi-synthetic jet fuel, SAIB: NE-11-56R2. http://caa.gov.il/index.php?option=com_docman&view=download&alias=5996-engine-fuel-and-control-semi-synthetic-jet-fuel-19-05-2016&category_slug=2016-1&Itemid=669&lang=he.pdf (2016). Accessed 28 Nov 2017

  23. FAA: New alternative jet fuel approved. http://www.faa.gov/news/updates/?newsId=85425 (2016). Accessed 28 Nov 2017

  24. Schulz, H.: Short history and present trend of Fischer–Tropsch synthesis. Appl. Catal. A 186, 3–12 (1999)

    Article  Google Scholar 

  25. Sasol: About Sasol—Southern African operations—overview. http://www.sasol.com/about-sasol/regional-operating-hubs/southern-africa-operations/secunda-synfuels-operations/overview. Accessed 28 Nov 2017

  26. Shell: Gas-to-Liquids. http://www.shell.com/energy-and-innovation/natural-gas/gas-to-liquids.html. Accessed 28 Nov 2017

  27. Hu, J., Yu, F., Lu, Y.: Application of Fischer-Tropsch synthesis in biomass to liquid conversion. Catalysts 2, 303–326 (2012)

    Article  Google Scholar 

  28. Zschocke, A.: Abschlussbericht zu dem Vorhaben Projekt BurnFAIR – Arbeitspakete 1.1 bis 1.4. (2014)

  29. de Klerk, A.: Synthesis Gas Production, Cleaning and Conditioning. In: Fischer-Tropsch Refining, pp. 51–72. Wiley, Weinheim (2011)

  30. de Klerk, A.: Fischer-Tropsch Synthesis. In: Fischer-Tropsch Refining, pp. 73–103. Wiley, Weinheim (2011)

  31. de Klerk, A.: Jet Fuel Refining. In: Fischer-Tropsch Refining, pp. 541–558. Wiley, Weinheim (2011)

  32. de Klerk, A.: Fischer-Tropsch Facilities at a Glance. In: Fischer-Tropsch Refining, pp. 3–20. Wiley, Weinheim (2011)

  33. CAAFI: Alternative Jet Fuel—Frequently Asked Questions. http://www.caafi.org/resources/faq.html#Alternative (2016). Accessed 28 Nov 2017

  34. Red Rock Biofuels: Technology http://redrockbio.com/Technology.html. Accessed 28 Nov 2017

  35. Sasol: Annual integrated report. http://www.sasol.com/sites/sasol/files/Sasol%20AIR%202014%20complete.pdf (2014). Accessed 28 Nov 2017

  36. Ogleby, G.: FedEx plans to deliver ‘future of aviation’ with biofuels drive. edie.net. http://www.edie.net/news/7/FedEx-commits-to-future-of-aviation-fuel/ (2016). Accessed 28 Nov 2017

  37. Total: BioTfuel: Developing second-generation biofuels. http://www.total.com/en/energy-expertise/projects/bioenergies/biotfuel-converting-plant-wastes-into-fuel (2017). Accessed 28 Nov 2017

  38. Fulcrum Bioenergy: Company—projects. http://fulcrum-bioenergy.com/company/projects/ (2017). Accessed 28 Nov 2017

  39. SOLAR-JET: Sunlight to jet fuel: European collaboration SOLAR-JET for the first time demonstrate the entire production path of “solar” kerosene. http://www.dlr.de/dlr/Portaldata/1/Resources/documents/2014/SOLAR-JET_PR_April_2014_R1_0_ENGLISH_final.pdf (2014). Accessed 28 Nov 2017

  40. Weber, L.: Diesel aus CO2—Klare Brühe für die Ministerin. FAZ.net. http://www.faz.net/aktuell/technik-motor/umwelt-technik/johanna-wankas-audi-a8-wird-mit-kuenstlichem-diesel-betankt-13547499.html (2015). Accessed 28 Nov 2017

  41. DLR: SOLAR-JET—research group first to produce alternative kerosene using sunlight, water and carbon dioxide. http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10081/151_read-10119/#/gallery/14468 (2014). Accessed 28 Nov 2017

  42. SOLAR-JET: Scientific approach. http://www.solar-jet.aero/page/about-solar-jet/scientific-approach.php (2014). Accessed 28 Nov 2017

  43. Sunfire: Building bridge between energy networks. http://www.sunfire.de/en/applications/fuel (2016). Accessed 28 Nov 2017

  44. RÖMPP: Triacylglycerole. Georg Thieme, Stuttgart (2008)

  45. Neste Oil: Neste Oil claims world leadership in biofuels from waste, residue. Biodiesel Magazine. http://www.biodieselmagazine.com/articles/324835/neste-oil-claims-world-leadership-in-biofuels-from-waste-residue (2015). Accessed 28 Nov 2017

  46. Neste: Renewable raw materials. https://www.neste.com/fi/en/companies/products/renewable-products/raw-materials. Accessed 28 Nov 2017

  47. Renewable Energy Group: Biodiesel Technologies. http://www.regi.com/technologies/biodiesel. Accessed 28 Nov 2017

  48. Neste: Renewable Products. https://www.neste.com/en/corporate-info/who-we-are/business-areas/renewable-products. Accessed 28 Nov 2017

  49. Neste: Rotterdam refinery. https://www.neste.com/en/corporate-info/who-we-are/production/rotterdam-refinery. Accessed 28 Nov 2017

  50. Neste: Singapore refinery. https://www.neste.com/en/corporate-info/who-we-are/production/singapore-refinery. Accessed 28 Nov 2017

  51. Renewable Energy Group: REG Grays Harbor, LLC. http://www.regi.com/about-reg/locations/biorefineries/production-mode/reg-grays-harbor-llc. Accessed 28 Nov 2017

  52. Honeywell UOP: Honeywell Green Jet Fuel™. http://www.uop.com/processing-solutions/renewables/green-jet-fuel. Accessed 28 Nov 2017

  53. Lane, J.: Renewable jet fuel, competitive cost, at scale: the Digest’s Multi-Slide Guide to AltAir. Biofuels Digest. http://www.biofuelsdigest.com/bdigest/2016/05/19/63308/ (2016). Accessed 28 Nov 2017

  54. aireg: INERATEC and Petrixo first new members in 2016. http://www.aireg.de/en/press-releases/416-ineratec-and-petrixo-first-new-members-in-2016.html (2016). Accessed 28 Nov 2017

  55. Kotrba, R.: Petrixo to build biojet fuel refinery in UAE using UOP technology. Biodiesel Mag. http://www.biodieselmagazine.com/articles/128947/petrixo-to-build-biojet-fuel-refinery-in-uae-using-uop-technology (2014). Accessed 28 Nov 2017

  56. Eni: Green refinery. https://www.eni.com/en_IT/innovation/technological-platforms/green-refinery.page. Accessed 28 Nov 2017

  57. Diamond Green Diesel: https://www.diamondgreendiesel.com/. Accessed 28 Nov 2017

  58. Lane, J.: Diamond Green Diesel starts up, largest advanced biofuels facility goes online. Biofuels Dig. http://www.biofuelsdigest.com/bdigest/2014/05/15/diamond-green-diesel-starts-up-largest-advanced-biofuels-facility-goes-online/ (2014). Accessed 28 Nov 2017

  59. Total: La Mède: Total’s first Biorefinery. http://www.total.com/en/energy-expertise/projects/bioenergies/la-mede-total-first-biorefinery (2017). Accessed 28 Nov 2017

  60. Solazyme: Better products for people. http://solazymeindustrials.com/solutions/fuel (2014). Accessed 28 Nov 2017

  61. Sustainable Aviation: Sustainable fuels UK Road-Map. http://www.sustainableaviation.co.uk/wp-content/uploads/2015/09/SA-SAF-Roadmap-FINAL-24-Nov-2.pdf. Accessed 28 Nov 2017

  62. SkyNRG: Sustainable aviation fuel – Technology Section. http://skynrg.com/technology-section/. Accessed 28 Nov 2017

  63. SkyNRG: The company—about SkyNRG. http://skynrg.com/about-skynrg/. Accessed 28 Nov 2017

  64. Lane, J.: Financing aviation biofuels, creatively: the Digest’s 2015 8-Slide Guide to SkyNRG and the Fly Green Fund. Biofuels Digest. http://www.biofuelsdigest.com/bdigest/2015/11/18/financing-aviation-biofuels-creatively-the-digests-2015-8-slide-guide-to-skynrg-and-the-fly-green-fund/ (2015). Accessed 28 Nov 2017

  65. Renewable Energy Group: Biorefineries. http://www.regi.com/about-reg/locations/biorefineries. Accessed 28 Nov 2017

  66. Amyris: trans-beta-Farnesene. https://farnesene.net. Accessed 28 Nov 2017

  67. Total: Amyris: a cutting-edge biotechnology platform. https://www.total.com/en/energy-expertise/projects/bioenergies/amyris-biotechnology-platform (2017). Accessed 28 Nov 2017

  68. RÖMPP: Terpene. Georg Thieme, Stuttgart (2009)

  69. aireg: Milestone for sustainable aviation: innovative fuel gains approval. http://www.aireg.de/en/press-releases/333-milestone-for-sustainable-aviation-innovative-fuel-gains-approval.html (2014). Accessed 29 Nov 2017

  70. Bomgardner, M.M.: Amyris will sell farnesane plant to DSM. Chem. Eng. News 27(47), 11 (2017)

    Google Scholar 

  71. DSM: DSM expands strategic alliance with Amyris and acquires Brazilian production facility from Amyris (press release). https://www.dsm.com/corporate/media/informationcenter-news/2017/11/51-17-dsm-expands-strategic-alliance-with-amyris-and-acquires-brazilian-production-facility-from-amyris.html (2017). Accessed 12 December 2017

  72. LanzaTech: Innovation—Technical Overview. http://www.lanzatech.com/innovation/technical-overview/. Accessed 29 Nov 2017

  73. Gevo Inc.: Gevo’s alcohol-to-jet fuel meets approved ASTM standard. Biomass Magazine. http://biomassmagazine.com/articles/13078/gevoundefineds-alcohol-to-jet-fuel-meets-approved-astm-standard (2016). Accessed 29 Nov 2017

  74. Gevo: Company overview—technology. http://www.gevo.com/about/company-overview/technology/. Accessed 29 Nov 2017

  75. Gevo: Company Overview—Isobutanol Plant: Luverne, Minn. http://www.gevo.com/about/company-overview/isobutanol-plant-luverne-minn/. Accessed 29 Nov 2017

  76. Gevo: Company overview—biorefinery: Silsbee, Texas. http://www.gevo.com/about/company-overview/biorefinery-silsbee-texas/. Accessed 29 Nov 2017

  77. Byogy Renewables: Technology. http://www.byogy.com/technology/index.html. Accessed 29 Nov 2017

  78. Swedish BioFuels, Technology. http://www.swedishbiofuels.se/keyproperties. Accessed 29 Nov 2017

  79. ARA: Advanced biofuels and renewable chemicals. https://www.ara.com/capabilities/advanced-biofuels-and-renewable-chemicals. Accessed 29 Nov 2017

  80. Virent: Jet Fuel. http://www.virent.com/products/jet-fuel/. Accessed 29 Nov 2017

  81. McCarty, D., Doom, J.: Kior Inc., Biofuel company, files bankruptcy, plans sale. Bloomberg. https://www.bloomberg.com/news/articles/2014-11-10/kior-inc-biofuel-company-files-bankruptcy-plans-sale (2014). Accessed 29 Nov 2017

  82. Licella: Cat-HTR. http://www.licella.com.au/cat-htr/. Accessed 28 Nov 2017

  83. Honeywell UOP: RTP™ Technology for biomass conversion. https://www.uop.com/processing-solutions/renewables/technology-for-biomass-conversion/. Accessed 28 Nov 2017

  84. Envergent Technologies: RTP™ Technology converts low-value biomass into a high-value liquid asset—RTP green fuel. https://www.envergenttech.com/technology/. Accessed 28 Nov 2017

  85. Kick, T., Kathrotia, T., Braun-Unkhoff M., Riedel U.: An experimental and modeling study of laminar flame speeds of alternative aviation fuels. Proc. of ASME Turbo Expo GT2011-45606 (2011)

  86. Kick, T., Herbst, J., Marquetand, J., Braun-Unkhoff, M., Naumann, C., Riedel, U.: An experimental and modeling study of burning velocities of possible future synthetic jet fuel. Energy 43(1), 111–123 (2012)

    Article  Google Scholar 

  87. Mzé-Ahmed, A., Dagaut, P., Hadj-Ali, K., Dayma, G., Kick, T., Herbst, J., Kathrotia, T., Braun-Unkhoff, M., Herzler, J., Naumann, C., Riedel, U.: Oxidation of a coal-to-liquid synthetic jet fuel: experimental and chemical kinetic modeling study. Energy Fuel 26, 6070–6079 (2012)

    Article  Google Scholar 

  88. Dagaut, P., Karsenty, F., Dayma, G., Diévart, P., Hadj-Ali, K., Mzé-Ahmed, A., Braun-Unkhoff, M., Herzler, J., Kathrotia, T., Kick, T., Naumann, C., Riedel, U., Thomas, L.: Experimental and detailed kinetic model for the oxidation of a Gas to Liquid (GtL) jet fuel. Comb. Flame 161, 835–847 (2014)

    Article  Google Scholar 

  89. Alfa-Bird: Alternative fuels and biofuels for aircraft. EUFP7/2007–2013, grant agreement no° 213266. http://www.alfa-bird.eu-vri.eu/. Accessed 28 Nov 2017

  90. Eberius, H., Kick, T.: Stabilization of premixed, conical methane flames at high pressure. Ber. Bunsen. Phys. Chem. 96(10), 1416–1419 (1992)

    Article  Google Scholar 

  91. Braun-Unkhoff, M., Kathrotia, T., Rauch, B., Riedel, U.: About the interaction between composition and performance of alternative jet fuels. CEAS Aeronaut. J. 7(1), 83–94 (2016)

    Article  Google Scholar 

  92. Joule: Joule completes acquisition of red rock biofuels. Biomass Mag. http://biomassmagazine.com/articles/12817/joule-completes-acquisition-of-red-rock-biofuels (2016). Accessed 28 Nov 2017

  93. Lane J.: Heat death: Joule unlimited collapses as oil prices flag, time passes, pressure mounts. Biofuel Dig. http://www.biofuelsdigest.com/bdigest/2017/07/18/heat-death-joule-unlimited-collapses-as-oil-prices-fall-time-passes-pressure-mounts/ (2017). Accessed 29 Nov 2017

  94. Rye, L., Blakey, S., Wilson, C.W.: Sustainability of supply or the planet: a review of potential drop-in alternative aviation fuels. Energy Environ. Sci. 3, 17–27 (2010)

    Article  Google Scholar 

  95. Conconi, C.C., Crnkovic, P.M.: Thermal behavior of renewable diesel from sugar cane, biodiesel, fossil diesel and their blends. Fuel Process. Technol. 114, 6–11 (2013)

    Article  Google Scholar 

  96. Won, S.H., Dooley, S., Veloo, P.S., Wang, H., Oehlschlaeger, M.A., Dryer, F.L., Ju, Y.: The combustion properties of 2,6,10-trimethyl dodecane and a chemical functional group analysis. Comb. Flame 161(3), 826–834 (2014)

    Article  Google Scholar 

  97. Tekawade, A., Oehlschlaeger, M.A.: An experimental study of the spray ignition of alkanes. Fuel 185, 381–393 (2016)

    Article  Google Scholar 

  98. Bloomberg Markets: https://www.bloomberg.com/energy. Accessed 29 Nov 2017

  99. Gevo: Our Markets—Jet Fuel. http://www.gevo.com/our-markets/jet-fuel/. Accessed 29 Nov 2017

  100. RÖMPP: Wasserstoff. Georg Thieme, Stuttgart (2004)

Download references

Acknowledgements

The authors thank A. Zschocke from Deutsche Lufthansa AG, S. Scheuermann and J. Ortner from the Bundeswehr Research Institute for Materials, Fuels and Lubricants (WIWeB) in Erding (Germany) for suppling us with farnesane and AtJ-SPK. Furthermore, we thank our colleagues from DLR Stuttgart: N. Ackermann, J. Herzler (now Univ. Duisburg-Essen), Capt. L. Thomas (USAF), Ph. Coens, and H. Dreyer for assisting us in measuring the ignition delay times as well as J. Herbst, Th. Kick and M. B. Raida for assisting us in measuring the laminar burning velocities. Some parts of the measurements were performed within the EU project ALFA-BIRD (EUFP7/2007–2013, Grant Agreement No° 213266) and the EU-tender SWAFEA (Service Contract No. Tren/F2/408.2008/SI2.518403/SI2.519012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Richter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richter, S., Braun-Unkhoff, M., Naumann, C. et al. Paths to alternative fuels for aviation. CEAS Aeronaut J 9, 389–403 (2018). https://doi.org/10.1007/s13272-018-0296-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-018-0296-1

Keywords

Navigation