Skip to main content
Log in

Characteristic flight speeds in bats

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

We present empirical data on flight speed for 30 species of Australian bats representing seven families. These data show five characteristic level flight speeds: ‘minimum’ (V min), ‘best efficiency’ (V eff), ‘most common’ (V mode), ‘maximum cruise’ (V mcr) and ‘maximum spurt’ (V msp). Next, we calculate V min, V eff, ‘maximum aerobic’ (V ae), ‘sustainable anaerobic’ (V san ) and ‘maximum anaerobic’ (V man) flight speeds using a published quasi-steady model. Model predictions were within 0.5 m s−1 of the empirical values for all five characteristic speeds given adequate samples. Model fidelity was cross-checked using flight speed data published for other Old and New World species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BMR :

Basal metabolic rate (Watt)

C D :

Three-dimensional drag coefficient = D/q/S ref

C d :

Two-dimensional drag coefficient

C L :

Three-dimensional lift coefficient = L/q/S ref

C l :

Two-dimensional lift coefficient

c w :

Wing reference chord measured parallel to sagittal plane = S/b

D :

Drag (N)

f w :

Wingbeat frequency (Hz)

g :

Acceleration due to gravity = 9.81 m s−2

h 0 :

Heave amplitude (nondimensional) = θ W b/2 c w

K :

Metabolic power factor accounting for blood circulation and respiration

L :

Lift (N)

m bat :

Bat mass (kg)

m muscle :

Mass of bat’s flight muscles (kg)

P :

Power

P aero :

Aerodynamic power, equivalent to mechanical power (W)

P flight-anaerobic :

Power at maximum anaerobic effort (W)

q :

Dynamic air pressure = 0.5 ρ V 2 (N m−2)

RMR :

Resting metabolic rate (Watt)

Re :

Reynolds number

S :

Area of a lifting or dragging surface or body (m2)

S ref :

Reference wing-head-body-ear-tail area (m2)

S w :

Wing-head-body-ear planform area (m2)

V :

Bat true flight speed in level, unaccelerated flight (m s−1)

V*:

Bat flight speed calculated from the aerodynamic model (m s−1)

Vol b max :

Maximum blood flow (ml min−1)

η:

Muscle mechanical efficiency

α:

Wing angle of attack (degrees)

θ W :

Wingbeat amplitude—empirical above or below the body axis reference dorsal plane (degrees)

ρ:

Air density = 1.2256 kg m−3 at sea level and 15 °C

Ae:

Maximum aerobic effort

Eff:

Best efficiency; abbreviated as ‘end’ indicating ‘endurance’ in our previous publications

h/t :

Planform of tail membrane

ind:

Induced

man:

Maximum anaerobic effort

mcr:

Maximum cruise

met:

Metabolic

mech:

Mechanical

min:

Minimum

mode:

Most commonly measured

msp:

Maximum spurt

pro:

Profile

para:

Parasitic

san:

Sustainable anaerobic effort

w :

Wing (includes wing, head, body and ears unless specified)

References

  1. Alexander, R.M.: Energy for animal life. Oxford University, Oxford (1999)

    Google Scholar 

  2. Speakman, J.R., Thomas, D.W.: Physiology ecology and energetics of bats. In: Kunz, T.H., Fenton, M.B. (eds.) Bat ecology. University of Chicago, Chicago (2003)

    Google Scholar 

  3. Pennycuick, C.J.: Modelling the flying bird. Academic Press, London (2008)

    Google Scholar 

  4. Grodzinski, U., Spiegel, O., Korine, C., Holderied, M.W.: Context dependent flight speed: evidence for energetically optimal flight speed in the bat Pipistrellus kuhlii. J. Anim. Ecol. 78, 540–548 (2009)

    Article  Google Scholar 

  5. Torenbeek, E.: Synthesis of subsonic airplane design. Delft University, The Netherlands (1976)

    Google Scholar 

  6. Hedenstrom, A., Johansson, L.C., Wolf, M., von Busse, R., Winter, Y., Spedding, G.R.: Bat flight generates complex aerodynamic tracks. Science 316, 894–897 (2007)

    Article  Google Scholar 

  7. Wang, Z.J.: Aerodynamic efficiency of flapping flight: analysis of a two stroke model. J. Exp. Biol. 211, 234–238 (2008)

    Article  Google Scholar 

  8. Shyy, W., Aono, H., Chimakurthi, S.K., Trizila, P., Cesnik, C.E.S., Lui, H.: Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46, 284–327 (2010)

    Article  Google Scholar 

  9. Muijres, F.T., Johansson, L.C., Barfield, R., Wolf, M., Spedding, G.R., Hedenström, A.: Leading-edge vortex improves lift in slow-flying bats. Science 319, 1250–1253 (2008)

    Article  Google Scholar 

  10. Persson, P.-O., Willis, D., Peraire, J.: Numerical simulation of flapping wings using a panel method and a high-order Navier–Stokes solver. Int. J. Numer. Meth. Eng. 89(10), 1296–1316 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bullen, R.D., McKenzie, N.L.: Aerodynamic cleanliness in bats. Aust. J. Zool. 56, 281–296 (2009)

    Article  Google Scholar 

  12. Bullen, R.D., McKenzie, N.L.: Bat wing airfoil and planform structures relating to aerodynamic characteristics. Aust. J. Zool. 55, 237–247 (2007)

    Article  Google Scholar 

  13. Bullen, R.D., McKenzie, N.L., Cruz-Neto, A.P.: Aerodynamic power and mechanical efficiency of bat airframes using a quasi-steady model. CEAS Aeronaut. J. 5, 253–264 (2014)

    Article  Google Scholar 

  14. Bullen, R.D., McKenzie, N.L.: Bat airframe design: flight performance, stability and control in relation to foraging ecology. Aust. J. Zool. 49, 235–262 (2001)

    Article  Google Scholar 

  15. Van Dyck, S., Strahan, R. (eds.): The Mammals of Australia, 3rd edn. Reed New Holland, Sydney (2008)

    Google Scholar 

  16. Parnaby, H.E.: A taxonomic review of Australian Greater Long-eared Bats previously known as Nyctophilus timoriensis (Chiroptera: Vespertilionidae) and some associated taxa. Aust Zool 35, 39–81 (2009)

    Article  Google Scholar 

  17. Reardon, T.B., McKenzie, N.L., Cooper, S.J.B., Appleton, B., Carthew, S., Adams, M.A.: Molecular and morphological investigation of species boundaries and phylogenetic relationships in Australian free-tailed bats Mormopterus (Chiroptera: Molossidae). Aust. J. Zool. 62, 109–136 (2014)

    Article  Google Scholar 

  18. Bullen, R.D., McKenzie, N.L.: Bat flight-muscle mass: implications for foraging strategy. Aust. J. Zool. 52, 605–622 (2004)

    Article  Google Scholar 

  19. McKenzie, N.L., Start, A.N., Bullen, R.D.: Foraging ecology and organisation of a desert bat fauna. Aust. J. Zool. 50, 529–548 (2002)

    Article  Google Scholar 

  20. McKenzie, N.L., Bullen, R.D.: An acoustic survey of zoophagic bats on islands in the Kimberley, Western Australia, including data on the echolocation ecology, organisation and habitat relationships of regional communities. Rec. West. Aust. Mus. Suppl. 81, 67–108 (2012)

    Article  Google Scholar 

  21. McKenzie, N.L., Bullen, R.D.: The echolocation calls, habitat relationships, foraging niches and communities of Pilbara microbats. Rec. West. Aust. Mus. Suppl. 78, 123–155 (2009)

    Article  Google Scholar 

  22. Rayner, J.M.V.: Estimating power curves of flying vertebrates. J. Exp. Biol. 202, 3449–3461 (1999)

    Google Scholar 

  23. Pennycuick, C.J.: The mechanics of bird migration. Ibis 111, 525–556 (1969)

    Article  Google Scholar 

  24. Weis-Fogh, T.: Energetics of hovering flight in hummingbirds and in drosophilia. J. Exp. Biol. 56, 79–104 (1972)

    Google Scholar 

  25. Tucker, V.A.: Bird metabolism during flight: evaluation of a theory. J. Exp. Biol. 58, 689–709 (1973)

    Google Scholar 

  26. Norberg, U.M., Kunz, T.H., Steffensen, J.F., Winter, Y., Von Helversen, O.: The cost of hovering and forward flight in a nectar-feeding bat, Glossophaga soricina, estimated from aerodynamic theory. J. Exp. Biol. 182, 152–153 (1993)

    Google Scholar 

  27. Bullen, R.D., McKenzie, N.L., Spoelstra, G.: Can some Australian bats take advantage of flat-plate aerodynamics? ACTA Chiropt. 15, 171–184 (2013)

    Article  Google Scholar 

  28. Bullen, R.D., McKenzie, N.L.: Scaling bat wingbeat frequency and amplitude. J. Exp. Biol. 205, 2615–2626 (2002)

    Google Scholar 

  29. Schmitz F.W.: ‘Aerodynamics Of The Model Airplane. Part 1. Airfoil Measurements.’ Translated as Redstone Scientific Information Center RSIC-721 (1967) (1942)

  30. Newsom, W.A., Satran, D.R. and Johnson, J.L.: Effects of wing leading edge modifications on a full-scale, low-wing general aviation airplane. NASA Technical Paper 2011 (1982)

  31. Polhamus, E.C.: Applying slender wing benefits to military aircraft. J. Aircr 21, 545–559 (1984)

    Article  Google Scholar 

  32. Cruz-Neto, A.P., Jones, K.E.: Exploring the evolution of the basal metabolic rate in bats. In: Zubaid, A., McCracken, G.F., Kunz, T.H. (eds.) Functional and evolutionary ecology of bats, pp. 56–89. Oxford University, Oxford (2006)

    Google Scholar 

  33. Voigt, C., Cruz-Neto, A.P.: Energetic analysis of bats. In: Kunz, T.H., Parsons, S. (eds.) Ecological and Behavioral Methods for the Study of Bats, 2nd edition, pp. 623–645. John Hopkins University, USA (2009)

    Google Scholar 

  34. Guyton, A.C. and Hall, J.E.: ‘Textbook of Medical Physiology. Ninth edition.’ W. B. Saunders Company, Philadelphia (1996)

  35. Bishop, C.M.: Heart mass and the maximum cardiac output of birds and mammals: implications for estimating the maximum aerobic power input of flying animals. Philos. Trans. R. S. Lond. B. 352, 447–456 (1997)

    Article  Google Scholar 

  36. Pennycuick, C.J.: Bird flight performance: a practical calculation manual. Oxford University, Oxford (1989)

    Google Scholar 

  37. Medler, S., Hulme, K.: Frequency-dependent power output and skeletal muscle design. Comp. Biochem. Physiol. Part A. 152, 407–417 (2009)

    Article  Google Scholar 

  38. Dudley, R., Winter, Y.: Hovering flight mechanics of neotropical flower bats (Phyllostomidae: Glossophaginae) in normodense and hypodense gas mixtures. J. Exp. Biol. 205, 3669–3677 (2002)

    Google Scholar 

  39. Askew, G.N., Marsh, R.L.: Review. Muscle designed for short-term power output quail flight muscles. J. Exp. Biol. 205, 2153–2160 (2002)

    Google Scholar 

  40. Wolken-Mohlmann, G.W., Knebel, P., Baryth, S., Peinke, J.: Dynamic lift measurements on a FX79W151A airfoil via pressure distribution on the wing tunnel walls. J. Phys. Conf. Ser. 75, 012026 (2007)

    Article  Google Scholar 

  41. Bousman, W.G.: Airfoil dynamic stall and rotorcraft maneuverability. NASA TM-2000-209601 (2000)

  42. Swartz, S.M., Iriate-Diaz, J., Riskin, D.K., Song, A., Tian, X., Willis, D.J. and Breuer, K.S.: Wing structure and the aerodynamic basis of flight in bats. American Institute of Aeronautics and Astronautics, pp. 10 (2007)

  43. Gardiner, J., Dimitriadis, G., Sellers, W., Codd, W.: The aerodynamics of big ears in the brown long-eared bat Plecotus auritus. Acta Chiropt 10, 313–322 (2008)

    Article  Google Scholar 

  44. Vanderelst, D., Peremans, H., Razak, N.A., Verstraelen, E., Dimitriadis, G.: The aerodynamic cost of head morphology in bats: maybe not as bad as it seems. PLoS One 10(3), e0118545 (2015)

    Article  Google Scholar 

  45. Hubel, T.Y., Hristov, N.I., Swartz, S.M., Breuer, K.S.: Changes in kinematics and aerodynamics over a range of speeds in Tadarida brasiliensis, the Brazilian free-tailed bat. J. R. Soc. Interface 9, 1120–1130 (2012)

    Article  Google Scholar 

  46. Swartz, S.M., Iriarte-Diaz, J., Riskin, D.K., Breuer, K.S.: A bird? A plane? No, it’s a bat: an introduction to the biomechanics of bat flight. In: Gunnell, G.F., Simmons, N.B. (eds.) Evolutionary history of bats–fossils, molecules and morphology, pp. 317–352. Cambridge University, UK (2012)

    Chapter  Google Scholar 

  47. Bullen, R.D., McKenzie, N.L., Bullen, K.E., Williams, M.R.: Bat heart mass: correlation with foraging niche and roost preference. Aust. J. Zool. 57, 399–408 (2009)

    Article  Google Scholar 

  48. Welsh, A., Welsh, L., Irving, F.: New Soaring Pilot, 1st edn. John Murray, London (1968)

    Google Scholar 

  49. Nabawy, M.R.A. and Crowther, W.J. Is Flapping Flight Aerodynamically Efficient? In: 32nd AIAA Applied Aerodynamics Conference, pp. 1–19. Atlanta, GA. (2014)

  50. Sachs, G.: Aerodynamic cost of flapping. J. Bionic Eng. 12, 61–69 (2015)

    Article  Google Scholar 

  51. Heerenbrink, M.K., Johansson, L.C., Hedenström, A.: Power of the wingbeat: modelling the effects of flapping wings in vertebrate flight. Proc. R. Soc. A. 471, 20140952 (2015). doi:10.1098/rspa.2014.0952

    Article  Google Scholar 

  52. Beard, J.S.: Plant life of Western Australia. Kangaroo Press, Kenhurst New South Wales (1990)

    Google Scholar 

  53. Yang, X., Schaaf, C., Strahler, A., Kunz, T., Fuller, N., Betke, M., Wu, Z., Wang, Z., Theriault, D., Culvenor, D., Jupp, D., Newnham, G., Lovell, J.: Study of bat flight behavior by combining thermal image analysis with LIDAR forest reconstruction. Can J Remote Sens 39, S112–S125 (2013)

    Article  Google Scholar 

  54. Sahley, C.T., Horner, M.A., Fleming, T.H.: Flight speeds and mechanical power outputs of the nectar-feeding bat, Leptonycteris curasoae (Phyllostomidae: Glossophaginae). J. Mammal. 74, 594–600 (1993)

    Article  Google Scholar 

  55. Start, A.N.: The feeding biology in relation to food sources of nectarivorous bats (Chiroptera: Macroglossinae) in Malaysia. Doctoral thesis, University of Aberdeen (1974)

  56. Riedesel, M.L.: Blood physiology. In: Wimsatt, W.A. (ed.) Biology of Bats. Academic Press, New York (1977)

    Google Scholar 

  57. Jurgens, K.D., Bartels, H., Bartels, R.: Blood oxygen transport and organ weights of small bats and small non-flying mammals. Respir. Physiol. 45, 243–260 (1981)

    Article  Google Scholar 

  58. Wolk, E., Bogdanowicz, W.: Hematology of the hibernating bat, Myotis daubentoni. Comp. Biochem. Physiol. A Comp. Physiol. 88, 637–639 (1987)

    Article  Google Scholar 

  59. Arevalo, F., Perez-Suarez, G., Lopez-Luna, P.: Haematological data and haemoglobin components in bats (Vespertilionidae). Comp. Biochem. Physiol. A Comp. Physiol. 88, 447–450 (1987)

    Article  Google Scholar 

  60. van der Westhuyzen, J.: Hematology and iron status of the Egyptian fruit bat, Rousettus aegyptiacus. Comp. Biochem. Physiol. A Comp. Physiol. 90, 117–120 (1988)

    Article  Google Scholar 

  61. Agar, N.S., Godwin, I.R.: Erythrocyte metabolism in two species of bats: common bent-wing bat and red fruit bat. Comp. Biochem. Physiol. B 101, 9–12 (1992)

    Google Scholar 

  62. Heard, D.J., Whittier, D.A.: Hematologic and plasma biochemical reference values for three flying fox species (Pteropus spp.). Journal of Zoo and Wildlife Medicine 28, 464–470 (1997)

    Google Scholar 

  63. Torno, C.S., Marte, B.R.G., Creus, D.C.: Blood values of the wrinkle-lipped bat (Chaerephon plicata). Philipp. J. Vet. Med. 35, 67–71 (1998)

    Google Scholar 

  64. Kinoti, G.K.: Observations on the blood of a tropical bat, Otomops martiensseni. Afr. J. Ecol. 11, 129–134 (1973)

    Article  Google Scholar 

  65. McKenzie, N.L., Start, A.N.: Structure of bat guilds in mangroves: disturbance and determinism. In: Morris, D.W., Abramski, Z., Fox, B.J., Willig, M.R. (eds.) Patterns in the structure of mammalian communities, pp. 167–178. Texas Tech. University, Lubbock (1989)

    Google Scholar 

  66. McKenzie, N.L., Muir, W.P.: Bats of the southern Carnarvon Basin, Western Australia. Rec. West. Aust. Mus. Suppl. 61, 465–477 (2000)

    Google Scholar 

  67. McKenzie, N.L., Gunnell, A., Yani, M., Williams, M.: Correspondence between flight morphology and foraging ecology in some Palaeotropical bats. Aust. J. Zool. 43, 241–257 (1995)

    Article  Google Scholar 

  68. Churchill, S.: Australian Bats. Reed New Holland, Sydney (2008)

    Google Scholar 

  69. Fenton, M.B.: Echolocation calls and patterns of hunting and habitat use of bats (Microchiroptera) from Chillagoe, North Queensland. Aust. J. Zool. 30, 417–425 (1982)

    Article  Google Scholar 

  70. McKenzie, N.L., Rolfe, J.K.: Structure of bat guilds in the Kimberley mangroves, Australia. J. Anim. Ecol. 55, 401–420 (1986)

    Article  Google Scholar 

  71. Norberg, U.M., Rayner, J.M.V.: Ecological morphology and flight in bats (Mammalia: Chiroptera): Wing adaptations, flight performance, foraging strategy and echolocation. Philos. Trans. Zool. Soc. Lond. B316, 335–427 (1987)

    Article  Google Scholar 

  72. Salcedo, H., Fenton, M.B., Hickey, B.C., Blake, R.W.: Energetic consequences of flight speeds of foraging Red and Hoary Bats (Lasiurus borealis and Lasiurus cinereus: Chiroptera: Vespertilionidae). J. Exp. Biol. 198, 2245–2251 (1995)

    Google Scholar 

  73. Bruderer, B., Popa-Lisseanu, A.G.: Radar data on wing-beat frequencies and flight speeds of two bat species. Acta Chiropt. 7, 73–82 (2005)

    Article  Google Scholar 

  74. Hayward, B., Davis, R.: Flight speeds in western bats. J. Mammal. 45, 236–242 (1964)

    Article  Google Scholar 

  75. Horner, M.A., Fleming, T.H., Sahley, C.T.: Foraging behavior and energetics of a nectar-feeding bat, Leptonycteris curasoae (Chiroptera: Phyllostomidae). J. Zool. 244, 575–586 (1998)

    Article  Google Scholar 

  76. Winter, Y., von Helverson, O.: The energy cost of flight: do bats fly more cheaply than birds? J. Comp. Biol. B 168, 105–111 (1998)

    Google Scholar 

  77. Jones, G., Rayner, J.M.V.: Flight performance, foraging tactics and echolocation in free living Daubenton’s bats Myotis daubentoni (Chiroptera: Vespertilionidae). J. Zool. 215, 113–132 (1988)

    Article  Google Scholar 

  78. Jones, G., Rayner, J.M.V.: Flight performance, foraging tactics and echolocation in the trawling insectivorous bat Myotis adversus (Chiroptera: Vespertilionidae). J. R. Soc. Lond. 225, 393–412 (1991)

    Google Scholar 

  79. Baagoe, H.J.: The Scandinavian bat fauna: adaptive wing morphology and free flight behavior in the field. In: Fenton, M.B., Racey, P.A., Rayner, J.M.V. (eds.) Recent advances in the study of bats. Cambridge University, Cambridge (1987)

    Google Scholar 

  80. Britton, A.R.C., Jones, G., Rayner, J.M.V., Boonman, A.M., Verboom, B.: Flight performance, echolocation and foraging behavior in pond bats, Myotis dasycneme. J. Zool. 241, 503–522 (1997)

    Article  Google Scholar 

  81. Kalko, E.K.V., Schnitzler, H.U.: The echolocation and hunting behavior of Daubenton’s bat, Myotis daubentoni. Behav. Ecol. Sociobiol. 24, 225–238 (1989)

    Article  Google Scholar 

  82. Schnitzler, H.-U., Kalko, E.K.V., Kaipf, I., Grinnell, A.D.: Fishing and echolocation behavior of the greater bulldog bat, Noctilio leporinus, in the field. Behav. Ecol. Sociobiol. 35, 327–345 (1994)

    Article  Google Scholar 

  83. Jones, G.: Flight performance, echolocation and foraging behavior in noctule bats Nyctalus noctula. J. Zool. 237, 303–312 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. E. C. McKenzie of Oregon State University who provided specialist advice on muscle physiology, C. Bullen and M. McKenzie who assisted with the field work. We thank three anonymous reviewers for advising improvements to an earlier draft. We also wish to thank the Western Australian Department of Parks and Wildlife for providing laboratory facilities used during the preparation of this manuscript. Fieldwork was partially funded by the Department of Parks and Wildlife.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Bullen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bullen, R.D., McKenzie, N.L. & Cruz-Neto, A.P. Characteristic flight speeds in bats. CEAS Aeronaut J 7, 621–643 (2016). https://doi.org/10.1007/s13272-016-0212-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-016-0212-5

Keywords

Navigation