Skip to main content
Log in

Development of microsatellite markers and analysis of genetic diversity of Barbatia virescens in the southern coasts of China

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

The blood clam Barbatia virescens is an ecologically and economically important species in the southern coast of China. Understanding of the genetic structure of B. virescens populations is vital to breeding strategies and conservation programs.

Objective

To develop and characterize a set of microsatellites loci primers for B. virescens, and provide helpful information for reasonable utilization and protection of B. virescens natural resources.

Methods

The microsatellites of B. virescens were detected using a RAD-seq approach based on an Illumina sequencing platform. For the test of microsatellite development, we calculated the number of alleles (Na), observed heterozygosities (Ho), expected heterozygosities (He) and exact tests for deviations from Hardy–Weinberg equilibrium (HWE). Twelve polymorphic loci were used to access the genetic diversity and population structure of four B. virescens populations.

Results

In this study, 50,729 microsatellites of B. virescens were detected. Twenty-two polymorphic microsatellite loci were developed for B. virescens. The number of alleles per locus ranged from 6 to 15, and expected heterozygosities varied from 0. 567 to 0.911. All the PIC values of the 22 loci were greater than 0.5, indicating that these markers were highly informative for further genetic analysis. Twelve loci were selected to analyze genetic diversity and population structure of four B. virescens populations collected from different geographical regions along the southern coast of China. The results showed moderate to high levels of genetic diversity in the four populations (mean Ar = 7.756–8.133; mean Ho = 0.575–0.639; mean He = 0.754–0.775). Pairwise FST estimates indicated that there was significant divergence among the four populations.

Conclusion

This study not only provides a large scale of sequence information of microsatellites which are valuable for future genetic mapping, trait association and kinship among B. virescens, but also offers useful information for the sustainable management of natural stocks and the development of breeding industry of B. virescens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Astanei I, Gosling E, Wilson JIM, Powell E (2005) Genetic variability and phylogeography of the invasive zebra mussel, Dreissena polymorpha (Pallas). Mol Ecol 14:1655–1666

    Article  CAS  PubMed  Google Scholar 

  • Baus E, Darrock DJ, Bruford MW (2005) Gene-flow patterns in Atlantic and Mediterranean populations of the Lusitanian sea star Asterina gibbosa. Mol Ecol 14:3373–3382

    Article  CAS  PubMed  Google Scholar 

  • Berman M, Austin CM, Miller AD (2014) Characterisation of the complete mitochondrial genome and 13 microsatellite loci through next-generation sequencing for the New Caledonian spider-ant Leptomyrmex pallens. Mol Biol Rep 41:1179–1187

    Article  CAS  PubMed  Google Scholar 

  • Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74:21–45

    Article  CAS  PubMed  Google Scholar 

  • Brown JE, Stepien CA (2010) Population genetic history of the dreissenid mussel invasions: expansion patterns across North America. Biol invasions 12:3687–3710

    Article  Google Scholar 

  • Cao Y, Li Z, Li Q, Chen X, Chen L, Dai G (2012) Development and characterization of microsatellite loci for Fenneropenaeus penicillatus Alcock. Afr J Biotechnol 11:10831–10833

    CAS  Google Scholar 

  • Cassista MC, Hart MW (2007) Spatial and temporal genetic homogeneity in the Arctic surfclam (Mactromeris polynyma). Mar Biol 152:569–579

    Article  Google Scholar 

  • Cavalli-Sforza LL, Edwards AW (1967) Phylogenetic analysis: models and estimation procedures. Evolution 21:550–570

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J, Liu K (2009) Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet 118:1121–1131

    Article  CAS  PubMed  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  PubMed  Google Scholar 

  • Dieringer D, Schlötterer C (2003) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Resour 3:167–169

    Article  CAS  Google Scholar 

  • Excoffer L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    Google Scholar 

  • Gao X, Zheng X, Bo Q, Li Q (2016) Population genetics of the common long-armed octopus Octopus minor (Sasaki, 1920) (Cephalopoda: Octopoda) in Chinese waters based on microsatellite analysis. Biochem Syst Ecol 66:129–136

    Article  CAS  Google Scholar 

  • García AA, Oliver G (2008) Species discrimination in seven species of Barbatia (Bivalvia: Arcoidea) from Thailand with a redescription of B. grayana (Dunker, 1858). Raffles B Zool Suppl 18:7–23

    Google Scholar 

  • Gong F, Zhang N, Guo H, Zhu K, Liu T, Jiang S et al (2016) Development and characterization of 23 polymorphic microsatellite markers for banana shrimp fenneropenaeus merguiensis. Conserv Genet Resour 8:9–11

    Article  Google Scholar 

  • Goudet J (2001) FSTAT: a program to estimate and test gene diversities and fixation indices.version 2.9.3. http://www2.unil.ch/popgen/softwares/FSTat.htm

  • György Z, Vouillamoz JF, Ladányi M, Pedryc A (2014) Genetic survey of Rhodiola rosea L. populations from the Swiss Alps based on SSR markers. Biochem Syst Ecol 54:137–143

    Article  CAS  Google Scholar 

  • Hunt A (1993) Effects of contrasting patterns of larval dispersal on the genetic connectedness of local populations of two intertidal starfish Patiriella calcar and P. exigua. MarEcol Prog Ser 92:179–186

    Article  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kenchington EL, Patwary MU, Zouros E, Bird CJ (2006) Genetic differentiation in relation to marine landscape in a broadcast-spawning bivalve mollusc Placopecten magellanicus). Mol Ecol 15:1781–1796

    Article  CAS  PubMed  Google Scholar 

  • Launey S, Ledu C, Boudry P, Bonhomme F, Naciri-Graven Y (2002) Geographic structure in the European flat oyster (Ostrea edulis L.) as revealed by microsatellite polymorphism. J Hered 93:331–338

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Park C, Kijima A (2002) Isolation and characterization of microsatellite loci in the pacific abalone, Haliotis discus hannai. J Shellfish Res 21:811–815

    Google Scholar 

  • Li S, Li Q, Yu H, Kong L, Liu S (2015) Genetic variation and population structure of the Pacific oyster Crassostrea gigas in the northwestern Pacific inferred from mitochondrial COI sequences. Fish Sci 81:1071

    Article  CAS  Google Scholar 

  • Ma HT, Jia CF, Yang JM, Wang F, Xue R, Han CH, Jiang HB (2015) Development of novel microsatellite markers in the Korean rockfish Sebastes schlegeli. Genet Mol Res 14:5099–5102

    Article  CAS  PubMed  Google Scholar 

  • Martínez L, Freire R, Arias-Pérez A, Méndez J, Insua A (2015) Patterns of genetic variation across the distribution range of the cockle Cerastoderma edule, inferred from microsatellites and mitochondrial DNA. Mar Biol 162:1393–1406

    Article  CAS  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200

    Article  CAS  PubMed  Google Scholar 

  • Ni L, Li Q, Kong L (2011) Microsatellites reveal fine-scale genetic structure of the Chinese surf clam Mactra chinensis.Mollusca, Bivalvia, Mactridae) in Northern China. Mar Ecol 32:488–497

    Article  Google Scholar 

  • Paetkau D (1999) Microsatellites obtained using strand extension: an enrichment protocol. Biotechniques 26:690–697

    Article  CAS  PubMed  Google Scholar 

  • Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Resour 6:288–295

    Article  Google Scholar 

  • Rajagopal S, Venugopalan V, Van der Velde G, Jenner H (2006) Greening of the coasts: a review of the Perna viridis success story. Aquat Ecol 40:273–297

    Article  CAS  Google Scholar 

  • Rassmann K, Schlötterer C, Tautz D (1991) Isolation of simple-sequence loci for use in polymerase chain reaction-based DNA fingerprinting. Electrophoresis 12:113–118

    Article  CAS  PubMed  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  PubMed  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629

    Article  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the Principles and Practice of Statistics in Biological Research, 3rd ed. Freeman, New York

    Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (hordeum vulgare L). Theor Appl Genet 106:411–422

    Article  CAS  PubMed  Google Scholar 

  • Tian Z, Zhang F, Liu H, Gao Q, Chen S (2016) Development of SSR markers for a Tibetan medicinal plant, Lancea tibetica (Phrymaceae) based on RAD sequencing. Appl Plant Sci 4:1600076

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Resour 4:535–538

    Article  CAS  Google Scholar 

  • Wang Y, Shi Y, Guo X (2009) Identification and characterization of 66 EST-SSR markers in the eastern oyster Crassostrea virginica (Gmelin). J Shellfish Res 28:227–234

    Article  Google Scholar 

  • Wang B, Xie X, Liu S, Wang X, Pang H, Liu Y (2017a) Development and characterization of novel microsatellite markers for the Common Pheasant (Phasianus colchicus) using RAD-sEq. Avian Res 8:4

    Article  Google Scholar 

  • Wang W, Ma C, Chen W, Zhang H, Kang W, Ni Y, Ma L (2017b) Population genetic diversity of Chinese sea bass.Lateolabrax maculatus. from southeast coastal regions of China based on mitochondrial COI gene sequences. Biochem Syst Ecol 71:114–120

    Article  CAS  Google Scholar 

  • Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. J Hum Genet 44:388–396

    CAS  Google Scholar 

  • Xue DX, Wang HY, Zhang T, Liu JX (2014) Population genetic structure and demographic history of Atrina pectinata, based on mitochondrial DNA and microsatellite markers. PLoS ONE 9:95436

    Article  CAS  Google Scholar 

  • Yu H, Li Q (2007) Genetic variation of wild and hatchery populations of the Pacific oyster Crassostrea gigas assessed by microsatellite markers. Mol Genet Genomics 34:1114–1122

    Article  CAS  Google Scholar 

  • Yu H, Gao S, Chen A, Kong L, Li Q (2015) Genetic diversity and population structure of the ark shell Scapharca broughtonii, along the coast of china based on microsatellites. Biochem Syst Ecol 58:235–241

    Article  CAS  Google Scholar 

  • Zhan A, Hu J, Hu X, Zhou Z, Hui M, Wang S, Bao Z (2009) Fine-scale population genetic structure of Zhikong scallop (Chlamys farreri): do local marine currents drive geographical differentiation? Mar Biotechnol 11:223–235

    Article  CAS  Google Scholar 

  • Zhang P, Huang XK, Wang TG, Lin SZ, Zhang LN (2011) Study on the technique of artificial reproduction and nursing of Barbatia virescens. J Shanghai Ocean Univ 6:008 (in Chinese)

    CAS  Google Scholar 

  • Zhao Y, Wang H, Ji X, Yang Y, Zeng Y (2014) Isolation and characterization of 27 novel polymorphic microsatellite markers in oriental river prawn Macrobrachium nipponense. Conserv Genet Resour 6:293–295

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the grants from Fundamental Research Funds for the Central Universities (201762014), and Industrial Development Project of Qingdao City (17-3-3-64-nsh).

Funding

This study was funded by Fundamental Research Funds for the Central Universities (201762014), and Industrial Development Project of Qingdao City (17-3-3-64-nsh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yu.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yu, H. & Li, Q. Development of microsatellite markers and analysis of genetic diversity of Barbatia virescens in the southern coasts of China. Genes Genom 41, 407–416 (2019). https://doi.org/10.1007/s13258-018-0769-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-018-0769-y

Keywords

Navigation