Skip to main content

Advertisement

Log in

Estimating the Health Impact of Climate Change With Calibrated Climate Model Output

  • Published:
Journal of Agricultural, Biological, and Environmental Statistics Aims and scope Submit manuscript

Abstract

Studies on the health impacts of climate change routinely use climate model output as future exposure projection. Uncertainty quantification, usually in the form of sensitivity analysis, has focused predominantly on the variability arise from different emission scenarios or multi-model ensembles. This paper describes a Bayesian spatial quantile regression approach to calibrate climate model output for examining to the risks of future temperature on adverse health outcomes. Specifically, we first estimate the spatial quantile process for climate model output using non-linear monotonic regression during a historical period. The quantile process is then calibrated using the quantile functions estimated from the observed monitoring data. Our model also down-scales the gridded climate model output to the point-level for projecting future exposure over a specific geographical region. The quantile regression approach is motivated by the need to better characterize the tails of future temperature distribution where the greatest health impacts are likely to occur. We applied the methodology to calibrate temperature projections from a regional climate model for the period 2041 to 2050. Accounting for calibration uncertainty, we calculated the number of excess deaths attributed to future temperature for three cities in the US state of Alabama.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, G. B., and Bell, M. L. (2009), “Weather-Related Mortality: A Study of how Heat, Cold, and Heat Waves Affect Mortality in the United States,” Epidemiology, 20 (2), 205–213.

    Article  Google Scholar 

  • — (2011), “Heat Waves in the United States: Mortality Risk During Heat Waves and Effect Modification by Heat Wave Characteristics in 43 US Communities,” Environmental Health Perspectives, 119 (2), 210–218. doi:10.1289/ehp.1002313.

    Article  Google Scholar 

  • Bell, M. L., Goldberg, R., Hogrefe, C., Kinney, P. L., Knowlton, K., Lynn, B., Rosenthal, J., Rosenzweig, C., and Patz, J. A. (2007), “Climate Change, Ambient Ozone, and Health in 59 US Cities,” Climatic Change, 82, 61–76.

    Article  Google Scholar 

  • Berrocal, V. J., Gelfand, A. E., and Holland, D. M. (2010), “A Spatio-Temporal Downscaler for Output From Numerical Models,” Journal of Agricultural, Biological, and Environmental Statistics, 15, 176–197. ISSN 1085-7117.

    Article  MathSciNet  Google Scholar 

  • Caya, D., Laprise, R., Giguère, M., Bergeron, G., Blanchet, J. P., Stocks, B. J., and Boer, G. J. (1995), “Description of the Canadian Regional Climate Model,” Water, Air and Soil Pollution, 1, 477–482.

    Article  Google Scholar 

  • Chang, H. H., Zhou, J., and Fuentes, M. (2010), “Impact of Climate Change on Ambient Ozone Level and Mortality in Southeastern United States,” International Journal of Environmental Research and Public Health, 7 (7), 2866–2880.

    Article  Google Scholar 

  • Curriero, F. C., Heiner, K. S., Samet, J. M., Zeger, S. L., Strug, L., and Patz, J. A. (2002), “Temperature and Mortality in 11 Cities of the Eastern United States,” American Journal of Epidemiology, 155 (1), 81–87.

    Article  Google Scholar 

  • Dunson, D. B., and Taylor, J. A. (2005), “Approximate Bayesian Inference for Quantiles,” Journal of Nonparametric Statistics, 17 (3), 385–400.

    Article  MathSciNet  MATH  Google Scholar 

  • Eder, B., and Yu, S. (2006), A Performance Evaluation of the 2004 Release of Models-3 cmaq. Atmospheric Environment.

  • Fuentes, M., and Raftery, A. E. (2005), “Model Evaluation and Spatial Interpolation by Bayesian Combination of Observations With Outputs From Numerical Models,” Biometrics, 61 (1), 36–45. ISSN 1541-0420.

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman, A. (2004), “Parameterization and Bayesian Modelling,” Journal of the American Statistical Association, 99, 537–545.

    Article  MathSciNet  MATH  Google Scholar 

  • Gryparis, A., Paciorek, C. J., Zeka, A., Schwartz, J., and Coull, B. A. (2009), “Measurement Error Caused by Spatial Misalignment in Environmental Epidemiology,” Biostatistics, 10, 258–274.

    Article  Google Scholar 

  • Hosking, J. R. M., and Wallis, J. R. (1987), “Parameter and Quantile Estimation for the Generalized Pareto Distribution,” Technometrics, 29 (3), 339–349. ISSN 00401706.

    Article  MathSciNet  MATH  Google Scholar 

  • Huth, R., Kysely, J., and Pokorna, L. (2000), “A gcm Simulation of Heat Waves, Dry Spells, and Their Relationships to Circulation,” Climatic Change, 46, 29–60.

    Article  Google Scholar 

  • John, D. E., and Rose, J. B. (2005), “Review of Factors Affecting Microbial Survival in Groundwater,” Environmental Science & Technology, 39 (19), 7345–7356.

    Article  Google Scholar 

  • Jun, M., Knutti, R., and Nychka, D. W. (2008), “Spatial Analysis to Quantify Numerical Model Bias and Dependence: How Many Climate Models Are There?” Journal of the American Statistical Association, 103, 934–947.

    Article  MathSciNet  MATH  Google Scholar 

  • Karl, T. R., and Knight, R. W. (1997), “The 1995 Chicago Heat Wave: How Likely Is a Recurrence?” Bulletin of the American Meteorological Society, 78, 1107–1119.

    Article  Google Scholar 

  • Kaufman, C., and Sain, S. (2010), “Bayesian Functional Anova Modeling Using Gaussian Process Prior Distributions,” Bayesian Analysis, 5, 123–150.

    Article  MathSciNet  Google Scholar 

  • Kharin, V. V., and Zwiers, F. W. (2000), “Changes in Extremes in an Ensemble of Transient Climate Simulations With a Coupled Atmosphere-Ocean gcm,” Journal of Climate, 13, 3760–3788.

    Article  Google Scholar 

  • Knowlton, K., Rosenthal, J. E., Hogrefe, C., Lynn, B., Gaffin, S., Goldberg, R., Rosenzweig, C., Ku, J., and Kinney, P. L. (2004), “Assessing Ozone-Related Health Impacts Under a Change Climate,” Environmental Health Perspectives, 112, 1557–1563.

    Article  Google Scholar 

  • Knutti, R. (2008), “Should We Believe Model Predictions of Future Climate Change?” Philosophical Transactions of the Royal Society A, 366, 4647–4664.

    Article  MathSciNet  Google Scholar 

  • Koenker, R. (2005), Quantile Regression. Econometric Society Monograph Series, Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Kozumi, H., and Kobayashi, G. (2011), “Gibbs, Sampling Methods for Bayesian Quantile Regression,” Journal of Statistical Computation and Simulation, 81 (11), 1565–1578. ISSN 0094-9655. doi:10.1080/00949655.2010.496117.

    Article  MathSciNet  Google Scholar 

  • Lavine, M. (1995), “On an Approximate Likelihood for Quantiles,” Biometrika, 82, 220–222.

    Article  MathSciNet  MATH  Google Scholar 

  • Lu, Z. Q., and Clarkson, D. B. (1999), “Monotone Spline and Multidimensional Scaling,” Proceedings of American Statistical Association, Section of Statistical Computing, 185–190.

  • McMillan, N. J., Holland, D. M., Morara, M., and Feng, J. (2009), “Combining Numerical Model Output and Particulate Data Using Bayesian Space-Time Modeling,” Environmetrics, 21, 48–65.

    MathSciNet  Google Scholar 

  • Mearns, L. O., Gutowski, W. J., Jones, R., Leung, L.-Y., McGinnis, S., Nunes, A. M. B., and Qian, Y. The North American Regional Climate Change Assessment Program Dataset, National Center for Atmospheric Research Earth System Grid Data Portal, Boulder, co. Data Downloaded 2012-04-19. http://www.earthsystemgrid.org/project/NARCCAP.html.

  • — (2009), “A Regional Climate Change Assessment Program for North America,” EOS, 90 (36), 311–312.

    Article  Google Scholar 

  • Ogden, N. H., Maarouf, A., Barker, I. K., Bigas-Poulin, M., Lindsay, M. G., Callaghan, C. J., Ramay, F., Waltner-Toews, D., and Charrn, D. F. (2006), “Climage Change and the Potential for Range Expansion of the Lyme Disease Vector Ixodes Scapularis in Canada,” International Journal of Parasitology, 36 (1), 63–70.

    Article  Google Scholar 

  • Peng, R. D., and Wealty, L. J. (2004), “The Nmmapsdata Package,” R News, 4, 10–14.

    Google Scholar 

  • Peng, R. D., Bobb, J. F., Tebaldi, C., McDaniel, L., Bell, M. L., and Dominici, F. (2011), “Toward a Quantitative Estimate of Future Heat Wave Mortality Under Global Climate Change,” Environmental Health Perspectives, 119 (5), 701–706. doi:10.1289/ehp.1002430.

    Article  Google Scholar 

  • Ramsay, J. O. (1988), “Monotone Regression Splines in Action,” Statistical Science, 3 (4), 425–441.

    Article  Google Scholar 

  • Remais, J. S., Liang, S., and Spear, R. C. (2008), “Coupling Hydrologic and Infectious Disease Models to Explain Regional Differences in Schistosomiasis Transmission in Southwestern China,” Environmental Science & Technology, 42 (7), 2643–2649.

    Article  Google Scholar 

  • Sain, S. R., Furrer, R., and Cressie, N. (2011), “A Spatial Analysis of Multivariate Output From Regional Climate Models,” Annals of Applied Statistics, 5 (1), 150–175.

    Article  MathSciNet  MATH  Google Scholar 

  • Scinocca, J. F., McFarlane, N. A., Lazare, M., Li, J., and Plummer, D. (2008), “The cccma Third Generation agcm and Its Extension Into the Middle Atmosphere,” Atmospheric Chemistry and Physics, 8, 7055–7074.

    Article  Google Scholar 

  • Smith, R. L., Tebaldi, C., Nychka, D., and Mearns, L. O. (2009), “Bayesian Modeling of Uncertainty in Ensembles of Climate Models,” Journal of the American Statistical Association, 104 (485), 97–116.

    Article  MathSciNet  Google Scholar 

  • Tokdar, S. T., and Kadane, J. B. (2011), “Simultaneous Linear Quantile Regression: A Semiparametric Bayesian Approach,” Bayesian Analysis, 6 (4), 1–22.

    MathSciNet  Google Scholar 

  • Zhou, J., Fuentes, M., and Davis, J. (2011), “Calibration of Numerical Model Output Using Nonparametric Spatial Density Functions,” Journal of Agricultural, Biological, and Environmental Statistics, 16, 531–553. ISSN 1085-7117.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwen Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Chang, H.H. & Fuentes, M. Estimating the Health Impact of Climate Change With Calibrated Climate Model Output. JABES 17, 377–394 (2012). https://doi.org/10.1007/s13253-012-0105-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-012-0105-y

Key Words

Navigation