Skip to main content
Log in

Abstract

Traditional spatial linear regression models assume that the mean of the response is a linear combination of predictors measured at the same location as the response. In spatial applications, however, it seems plausible that neighboring predictors can also inform about the response. This article proposes using unobserved kernel averaged predictors in such regressions. The kernels are parametric introducing additional parameters that are estimated with the data. Properties and challenges of using kernel averaged predictors within a regression model are detailed in the simple case of a univariate response and a single predictor. Additionally, extensions to multiple predictors and generalized linear models are discussed. The methods are demonstrated using a data set of dew duration and shrub density. Supplemental materials are available online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baíllo, A., and Grané, A. (2009), “Local Linear Regression for Functional Predictor and Scalar Response,” Journal of Multivariate Analysis, 100, 102–111.

    Article  MathSciNet  MATH  Google Scholar 

  • Banerjee, S., and Gelfand, A. E. (2002), “Prediction, Interpolation, and Regression for Spatially Misaligned Data Points,” Sankhya A, 64, 227–245.

    MathSciNet  MATH  Google Scholar 

  • Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2004), Hierarchical Modeling and Analysis for Spatial Data, Boca Raton: Chapman and Hall/CRC.

    MATH  Google Scholar 

  • Banerjee, S., Gelfand, A. E., Finley, A. O., and Sang, H. (2008), “Gaussian Predictive Process Models for Large Spatial Datasets,” Journal of the Royal Statistical Society, Series B, 70, 825–848.

    Article  MathSciNet  MATH  Google Scholar 

  • Berliner, L. M. (2000), “Hierarchical Bayesian Modeling in the Environmental Sciences,” Journal of the German Statistical Society, 84.

  • Chiles, J. P., and Delfiner, P. (1999), Geostatistics: Modeling Spatial Uncertainty, New York: Wiley Interscience.

    MATH  Google Scholar 

  • Cressie, N. A. C. (1993), Statistics for Spatial Data, New York: Wiley.

    Google Scholar 

  • Diggle, P. J., Tawn, J. A., and Moyeed, R. A. (1998), “Model-Based Geostatistics,” Applied Statistics, 47, 299–350.

    MathSciNet  MATH  Google Scholar 

  • Gardner, R. J. (2002), “The Brunn–Minkowski Inequality,” Bulletin of the American Mathematical Society, 39, 355–405.

    Article  MATH  Google Scholar 

  • Gelfand, A. E., Kim, H. J., Sirmans, C. F., and Banerjee, S. (2003), “Spatial Modeling With Spatially Varying Coefficient Processes,” Journal of the American Statistical Association, 98, 387–396.

    Article  MathSciNet  MATH  Google Scholar 

  • Gelfand, A. E., Schmidt, A. M., Banerjee, S., and Sirmans, C. F. (2004), “Nonstationary Multivariate Process Modeling Through Spatially Varying Coregionalization” (with discussion), Test, 12, 1–50.

    Article  MathSciNet  Google Scholar 

  • Geweke, J. (1992), “Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments,” in Bayesian Statistics 4, eds. J. M. Bernardo, J. Berger, A. P. Dawid, and A. F. M. Smith, Oxford: Oxford University Press, pp. 169–194.

    Google Scholar 

  • Higdon, D. (1998), “A Process-Convolution Approach to Modelling Temperatures in the North Atlantic Ocean,” Environmental and Ecological Statistics, 5, 173–190.

    Article  Google Scholar 

  • Majumdar, A., and Gelfand, A. E. (2007), “Multivariate Spatial Modeling for Geostatistical Data Using Convolved Covariance Functions,” Journal of Mathematical Geology, 39, 225–245.

    Article  MathSciNet  MATH  Google Scholar 

  • Matérn, B. (1986), Spatial Variation (2nd ed.), Berlin: Springer.

    MATH  Google Scholar 

  • Raftery, A. E., and Lewis, S. (1992), “How Many Iterations in the Gibbs Sampler,” in Bayesian Statistics 4, eds. J. M. Bernardo, J. Berger, A. P. Dawid, and A. F. M. Smith, Oxford: Oxford University Press, pp. 763–773.

    Google Scholar 

  • Royle, J. A., and Berliner, L. M. (1999), “A Hierarchical Approach to Multivariate Spatial Modeling and Prediction”, Journal of Agricultural, Biological, and Environmental Statistics, 4.

  • Rue, H., Martino, S., and Chopin, N. (2009), “Approximate Bayesian Inference for Latent Gaussian Models by Using Integrated Nested Laplace Approximations” (with discussion), Journal of the Royal Statistical Society, Series B, 71, 319–392.

    Article  MathSciNet  Google Scholar 

  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and van der Linde, A. (2002), “Bayesian Measures of Model Complexity and Fit” (with discussion), Journal of the Royal Statistical Society, Series B, 64, 583–639.

    Article  MATH  Google Scholar 

  • Wackernagel, H. (2003), Multivariate Geostatistics, Berlin: Springer.

    MATH  Google Scholar 

  • Wikle, C. K. (2002), “A Kernel Based Spectral Method for Non-Gaussian Spatio-Temporal Processes,” Statistical Modelling, 2, 299–314.

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, K., Wikle, C. K., and Fox, N. L. (2005), “A Kernel-Based Spatio-Temporal Dynamical Model for Nowcasting Weather Radar Reflectivities,” Journal of the American Statistical Association, 100, 1133–1144.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, H. (2004), “Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics,” Journal of the American Statistical Association, 99, 250–261.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan E. Gelfand.

Electronic Supplementary Material

Below are the links to the electronic supplementary materials.

(PDF 14 KB)

(PDF 19 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heaton, M.J., Gelfand, A.E. Spatial Regression Using Kernel Averaged Predictors. JABES 16, 233–252 (2011). https://doi.org/10.1007/s13253-010-0050-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-010-0050-6

Key Words

Navigation