Skip to main content
Log in

Effect of joint line preservation on mobile-type bearing unicompartmental knee arthroplasty: finite element analysis

  • Scientific paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

In this study, we performed a virtual mobile-bearing unicompartmental knee arthroplasty (UKA) on the contact pressure in the tibial insert and articular cartilage by using finite element (FE) analysis to understand clinical observations and elaborate on the potential risks associated with a joint line preservation such as wear on tibial insert and osteoarthritis on other compartment. Neutral position of the knee joint was defined in 0 mm joint line, and contact pressure between tibial insert and articular cartilage varies with respect to changes of joint line. Therefore, evaluation of contact pressure may provide the degree of joint line preservation. The FE model for the joint line was developed using a perpendicular projection line from the medial tibial plateau to the anatomical axis. Seven FE models for joint lines in cases corresponding to ± 6, ± 4, ± 2, and 0 mm were modeled and analyzed in normal level walking conditions. The maximum contact pressure on the superior and inferior surfaces of the polyethylene insert increased when the joint line became positive while the maximum contact pressure on the articular cartilage increased when the joint line became negative. The increase in the maximum contact pressure in the positive joint line exceeded that in the negative joint line, and this lead to an unsymmetrical maximum contact pressure distribution with respect to the joint line from a 0 reference. The joint line elevation was sensitive to increases or decreases in maximum contact pressures in the mobile-bearing UKA. The findings of the study determined that postoperative joint line preservation is important in mobile-type bearing UKA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Iorio R, Healy WL (2003) Unicompartmental arthritis of the knee. J Bone Joint Surg Am 85-A(7):1351–1364

    Article  PubMed  Google Scholar 

  2. Vardi G, Strover AE (2004) Early complications of unicompartmental knee replacement: the Droitwich experience. Knee 11(5):389–394

    Article  CAS  PubMed  Google Scholar 

  3. Psychoyios V, Crawford RW, O’Connor JJ, Murray DW (1998) Wear of congruent meniscal bearings in unicompartmental knee arthroplasty: a retrieval study of 16 specimens. J Bone Joint Surg Br 80(6):976–982

    Article  CAS  PubMed  Google Scholar 

  4. Scott RD, Santore RF (1981) Unicondylar unicompartmental replacement for osteoarthritis of the knee. J Bone Joint Surg Am 63(4):536–544

    Article  CAS  PubMed  Google Scholar 

  5. Lindstrand A, Stenstrom A, Lewold S (1992) Multicenter study of unicompartmental knee revision. PCA, Marmor, and St Georg compared in 3777 cases of arthrosis. Acta Orthop Scand 63(3):256–259

    Article  CAS  PubMed  Google Scholar 

  6. Palmer SH, Morrison PJ, Ross AC (1998) Early catastrophic tibial component wear after unicompartmental knee arthroplasty. Clin Orthop Relat Res 350:143–148

    Article  Google Scholar 

  7. Hamilton WG, Ammeen D, Engh CA Jr, Engh GA (2010) Learning curve with minimally invasive unicompartmental knee arthroplasty. J Arthroplasty 25(5):735–740

    Article  PubMed  Google Scholar 

  8. Weber P, Schroder C, Laubender RP, Baur-Melnyk A, von Schulze Pellengahr C, Jansson V, Muller PE (2013) Joint line reconstruction in medial unicompartmental knee arthroplasty: development and validation of a measurement method. Knee Surg Sports Traumatol Arthrosc 21(11):2468–2473

    Article  PubMed  Google Scholar 

  9. Konig C, Matziolis G, Sharenkov A, Taylor WR, Perka C, Duda GN, Heller MO (2011) Collateral ligament length change patterns after joint line elevation may not explain midflexion instability following TKA. Med Eng Phys 33(10):1303–1308

    Article  PubMed  Google Scholar 

  10. Fornalski S, McGarry MH, Bui CN, Kim WC, Lee TQ (2012) Biomechanical effects of joint line elevation in total knee arthroplasty. Clin Biomech 27(8):824–829

    Article  Google Scholar 

  11. Hopgood P, Martin CP, Rae PJ (2004) The effect of tibial implant size on post-operative alignment following medial unicompartmental knee replacement. Knee 11(5):385–388

    Article  CAS  PubMed  Google Scholar 

  12. Robinson BJ, Rees JL, Price AJ, Beard DJ, Murray DW, McLardy Smith P, Dodd CA (2002) Dislocation of the bearing of the Oxford lateral unicompartmental arthroplasty. A radiological assessment. J Bone Joint Surg Br 84(5):653–657

    Article  CAS  PubMed  Google Scholar 

  13. Kuwashima U, Okazaki K, Tashiro Y, Mizu-Uchi H, Hamai S, Okamoto S, Murakami K, Iwamoto Y (2015) Correction of coronal alignment correlates with reconstruction of joint height in unicompartmental knee arthroplasty. Bone Joint Res 4(8):128–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kwon OR, Kang KT, Son J, Kwon SK, Jo SB, Suh DS, Choi YJ, Kim HJ, Koh YG (2014) Biomechanical comparison of fixed- and mobile-bearing for unicomparmental knee arthroplasty using finite element analysis. J Orthop Res 32(2):338–345

    Article  PubMed  Google Scholar 

  15. Kim YS, Kang KT, Son J, Kwon OR, Choi YJ, Jo SB, Choi YW, Koh YG (2015) Graft extrusion related to the position of allograft in lateral meniscal allograft transplantation: biomechanical comparison between parapatellar and transpatellar approaches using finite element analysis. Arthroscopy 31(12):2380–2391

    Article  PubMed  Google Scholar 

  16. Kang KT, Kim SH, Son J, Lee YH, Chun HJ (2016) Computational model-based probabilistic analysis of in vivo material properties for ligament stiffness using the laxity test and computed tomography. J Mater Sci Mater Med 27(12):183

    Article  PubMed  Google Scholar 

  17. Koh YG, Son J, Kwon SK, Kim HJ, Kwon OR, Kang KT (2017) Preservation of kinematics with posterior cruciate-, bicruciate- and patient-specific bicruciate-retaining prostheses in total knee arthroplasty by using computational simulation with normal knee model. Bone Joint Res 6(9):557–565

    Article  PubMed  PubMed Central  Google Scholar 

  18. Peña E, Calvo B, Martinez MA, Palanca D, Doblaré M (2006) Why lateral meniscectomy is more dangerous than medial meniscectomy. A finite element study. J Orthop Res 24(5):1001–1010

    Article  PubMed  Google Scholar 

  19. Haut Donahue TL, Hull M, Rashid MM, Jacobs CR (2003) How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint. J Biomech 36(1):19–34

    Article  PubMed  Google Scholar 

  20. Shepherd D, Seedhom B (1999) The ‘instantaneous’ compressive modulus of human articular cartilage in joints of the lower limb. Rheumatology 38(2):124–132

    Article  CAS  PubMed  Google Scholar 

  21. Mesfar W, Shirazi-Adl A (2005) Biomechanics of the knee joint in flexion under various quadriceps forces. Knee 12(6):424–434

    Article  CAS  PubMed  Google Scholar 

  22. Takeda Y, Xerogeanes JW, Livesay GA, Fu FH, Woo SL (1994) Biomechanical function of the human anterior cruciate ligament. Arthroscopy 10(2):140–147

    Article  CAS  PubMed  Google Scholar 

  23. Peña E, Calvo B, Martinez M, Doblare M (2006) A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech 39(9):1686–1701

    Article  PubMed  Google Scholar 

  24. Limbert G, Taylor M, Middleton J (2004) Three-dimensional finite element modelling of the human ACL: simulation of passive knee flexion with a stressed and stress-free ACL. J Biomech 37(11):1723–1731

    Article  CAS  PubMed  Google Scholar 

  25. Reese SP, Maas SA, Weiss JA (2010) Micromechanical models of helical superstructures in ligament and tendon fibers predict large Poisson’s ratios. J Biomech 43(7):1394–1400

    Article  PubMed  PubMed Central  Google Scholar 

  26. Blankevoort L, Huiskes R (1996) Validation of a three-dimensional model of the knee. J Biomech 29(7):955–961

    Article  CAS  PubMed  Google Scholar 

  27. Pegg EC, Walter J, Mellon SJ, Pandit HG, Murray DW, D’Lima DD, Fregly BJ, Gill HS (2013) Evaluation of factors affecting tibial bone strain after unicompartmental knee replacement. J Orthop Res 31(5):821–828

    Article  PubMed  Google Scholar 

  28. Chang TW, Yang CT, Liu YL, Chen WC, Lin KJ, Lai YS, Huang CH, Lu YC, Cheng CK (2011) Biomechanical evaluation of proximal tibial behavior following unicondylar knee arthroplasty: modified resected surface with corresponding surgical technique. Med Eng Phys 33(10):1175–1182

    Article  PubMed  Google Scholar 

  29. Godest AC, Beaugonin M, Haug E, Taylor M, Gregson PJ (2002) Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. J Biomech 35(2):267–275

    Article  CAS  PubMed  Google Scholar 

  30. Kang KT, Koh YG, Jung M, Nam JH, Son J, Lee YH, Kim SJ, Kim SH (2017) The effects of posterior cruciate ligament deficiency on posterolateral corner structures under gait- and squat-loading conditions: a computational knee model. Bone Joint Res 6(1):31–42

    Article  PubMed  PubMed Central  Google Scholar 

  31. ISO 14243-1 (2002) Implants for surgery. Wear of total knee joint prostheses. Loading and displacement parameters for wear-testing machines with load control and corresponding environmental conditions for test

  32. Kutzner I, Heinlein B, Graichen F, Bender A, Rohlmann A, Halder A, Beier A, Bergmann G (2010) Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech 43(11):2164–2173

    Article  CAS  PubMed  Google Scholar 

  33. Halloran JP, Clary CW, Maletsky LP, Taylor M, Petrella AJ, Rullkoetter PJ (2010) Verification of predicted knee replacement kinematics during simulated gait in the Kansas knee simulator. J Biomech Eng 132(8):081010

    Article  PubMed  Google Scholar 

  34. Porteous AJ, Hassaballa MA, Newman JH (2008) Does the joint line matter in revision total knee replacement? J Bone Joint Surg Br 90(7):879–884

    Article  CAS  PubMed  Google Scholar 

  35. Laskin RS (2002) Joint line position restoration during revision total knee replacement. Clin Orthop Relat Res 404:169–171

    Article  Google Scholar 

  36. Konig C, Sharenkov A, Matziolis G, Taylor WR, Perka C, Duda GN, Heller MO (2010) Joint line elevation in revision TKA leads to increased patellofemoral contact forces. J Orthop Res 28(1):1–5

    PubMed  Google Scholar 

  37. Partington PF, Sawhney J, Rorabeck CH, Barrack RL, Moore J (1999) Joint line restoration after revision total knee arthroplasty. Clin Orthop Relat Res (367):165–171

  38. Figgie HE 3rd, Goldberg VM, Heiple KG, Moller HS 3rd, Gordon NH (1986) The influence of tibial-patellofemoral location on function of the knee in patients with the posterior stabilized condylar knee prosthesis. J Bone Joint Surg Am 68(7):1035–1040

    Article  PubMed  Google Scholar 

  39. Bellemans J (2004) Restoring the joint line in revision TKA: does it matter? Knee 11(1):3–5

    Article  CAS  PubMed  Google Scholar 

  40. Blackburne JS, Peel TE (1977) A new method of measuring patellar height. J Bone Joint Surg Br 59(2):241–242

    Article  CAS  PubMed  Google Scholar 

  41. Floren M, Davis J, Peterson MG, Laskin RS (2007) A mini-midvastus capsular approach with patellar displacement decreases the prevalence of patella baja. J Arthroplasty 22(6 Suppl 2):51–57

    Article  PubMed  Google Scholar 

  42. Anagnostakos K, Lorbach O, Kohn D (2012) Patella baja after unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 20(8):1456–1462

    Article  PubMed  Google Scholar 

  43. Morlock M, Schneider E, Bluhm A, Vollmer M, Bergmann G, Muller V, Honl M (2001) Duration and frequency of every day activities in total hip patients. J Biomech 34(7):873–881

    Article  CAS  PubMed  Google Scholar 

  44. Kwon OR, Kang KT, Son J, Suh DS, Baek C, Koh YG (2017) Importance of joint line preservation in unicompartmental knee arthroplasty: finite element analysis. J Orthop Res 35(2):347–352

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Gon Koh.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This article does not involve the performance of studies with human participants or animals by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, KT., Kwon, OR., Son, J. et al. Effect of joint line preservation on mobile-type bearing unicompartmental knee arthroplasty: finite element analysis. Australas Phys Eng Sci Med 41, 201–208 (2018). https://doi.org/10.1007/s13246-018-0630-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-018-0630-2

Keywords

Navigation