Skip to main content

Advertisement

Log in

Extraction of fetal ECG signal by an improved method using extended Kalman smoother framework from single channel abdominal ECG signal

  • Technical Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

This paper proposes a five-stage based methodology to extract the fetal electrocardiogram (FECG) from the single channel abdominal ECG using differential evolution (DE) algorithm, extended Kalman smoother (EKS) and adaptive neuro fuzzy inference system (ANFIS) framework. The heart rate of the fetus can easily be detected after estimation of the fetal ECG signal. The abdominal ECG signal contains fetal ECG signal, maternal ECG component, and noise. To estimate the fetal ECG signal from the abdominal ECG signal, removal of the noise and the maternal ECG component presented in it is necessary. The pre-processing stage is used to remove the noise from the abdominal ECG signal. The EKS framework is used to estimate the maternal ECG signal from the abdominal ECG signal. The optimized parameters of the maternal ECG components are required to develop the state and measurement equation of the EKS framework. These optimized maternal ECG parameters are selected by the differential evolution algorithm. The relationship between the maternal ECG signal and the available maternal ECG component in the abdominal ECG signal is nonlinear. To estimate the actual maternal ECG component present in the abdominal ECG signal and also to recognize this nonlinear relationship the ANFIS is used. Inputs to the ANFIS framework are the output of EKS and the pre-processed abdominal ECG signal. The fetal ECG signal is computed by subtracting the output of ANFIS from the pre-processed abdominal ECG signal. Non-invasive fetal ECG database and set A of 2013 physionet/computing in cardiology challenge database (PCDB) are used for validation of the proposed methodology. The proposed methodology shows a sensitivity of 94.21%, accuracy of 90.66%, and positive predictive value of 96.05% from the non-invasive fetal ECG database. The proposed methodology also shows a sensitivity of 91.47%, accuracy of 84.89%, and positive predictive value of 92.18% from the set A of PCDB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Panigrahy D, Sahu PK (2015) Extraction of fetal electrocardiogram (ECG) by extended state Kalman filtering and adaptive neuro-fuzzy inference system (ANFIS) based on single channel abdominal. Sadhana– Acad Proc Eng Sci Springer 40:1091–1104

    Google Scholar 

  2. Ocak H (2013) A medical decision support system based on support vector machines and the genetic algorithm for the evaluation of fetal well-being. J Med Syst. doi:10.1007/s10916-012-9913-4

    PubMed  Google Scholar 

  3. Cattani C, Doubrovina O, Rogosin S et al (2006) On the creation of a new diagnostic model for fetal well-being on the base of wavelet analysis of cardiotocograms. J Med Syst 30:489–494. doi:10.1007/s10916-006-9037-9

    Article  PubMed  Google Scholar 

  4. Liszka Hackzell JJ (2001) Categorization of fetal heart rate patterns using neural networks. Journal-of-Medical-Systems 25:269–276

    Article  CAS  PubMed  Google Scholar 

  5. Behar J, Johnson A, Clifford GD, Oster J (2014) A comparison of single channel fetal ECG extraction methods. Ann Biomed Eng 42:1340–1353. doi:10.1007/s10439-014-0993-9

    Article  PubMed  Google Scholar 

  6. Panigrahy D, Rakshit M, Sahu PK (2015) An efficient method for fetal ECG extraction from single channel abdominal ECG. 2015 International. Conference on IEEE, 2015 Industrial. Instrumentation and Control.(ICIC) pp 1083–1088

  7. Niknazar M, Rivet B, Jutten C (2013) Fetal ECG extraction by extended state Kalman filtering based on single-channel recordings. IEEE Trans Biomed Eng 60:1345–1352. doi:10.1109/TBME.2012.2234456

    Article  PubMed  Google Scholar 

  8. Zeng X, Zhou X, Li G, Liu Q (2012) Robust adaptive fetal heart rate estimation for single-channel abdominal ECG recording. 2012 5th International Conference on Biomedical Engineering and Informatics BMEI 2012 pp 587–591

  9. Tal Y, Akselrod S (1989) Fetal heart rate detection by a special transform method. Proceedings of Computers in Cardiology pp 275–278

  10. Ferrara ER, Widrow B (1982) Fetal electrocardiogram enhancement by time-sequenced adaptive filtering. IEEE Trans Biomed Eng 29:458–460. doi:10.1109/TBME.1982.324973

    Article  CAS  PubMed  Google Scholar 

  11. Abboud S, Alaluf A, Einav S, Sadeh D (1992) Real-time abdominal fetal ECG recording using a hardware correlator. Comput Biol Med 22:325–335. doi:10.1016/0010-4825(92)90021-E

    Article  CAS  PubMed  Google Scholar 

  12. Callaerts D, De Moor B, Vandewalle J et al (1990) Comparison of SVD methods to extract the foetal electrocardiogram from cutaneous electrode signals. Med Biol Eng Comput 28:217–224. doi:10.1007/BF02442670

    Article  CAS  PubMed  Google Scholar 

  13. Kanjilal PP, Palit S, Saha G (1997) Fetal ECG extraction from single-channel maternal ECG using singular value decomposition. IEEE Trans Biomed Eng 44:51–59. doi:10.1109/10.553712

    Article  CAS  PubMed  Google Scholar 

  14. Arias-Ortega R, Gaitán-González MJ (2010) Single channel abdominal ECG algorithm for real-time maternal and fetal heart rate monitoring. Rev Mex Ing Biomédica 32:111–118

    Google Scholar 

  15. Niknazar M, Rivet B, Jutten C (2012) Fetal ECG extraction from a single sensor by a non-parametric modeling. 20th European Signal Processing Confrence (EUSIPCO 2012), pp 949–953

  16. Mochimaru F (2002) Detecting the fetal electrocardiogram by wavelet theory-based methods. Prog Biomed Res 7:185–193

    Google Scholar 

  17. Khamene A, Negahdaripour S (2000) A new method for the extraction of fetal ECG from the composite abdominal signal. IEEE Trans Biomed Eng 47:507–516. doi:10.1109/10.828150

    Article  CAS  PubMed  Google Scholar 

  18. Camps G, Martinez M, Soria E (2001) Fetal ECG extraction using an FIR neural network. Comput Cardiol doi:10.1109/CIC.2001.977639 (Cat no.01CH37287)

    Google Scholar 

  19. Camps-Valls G, Martínez-Sober M, Soria-Olivas E et al (2004) Foetal ECG recovery using dynamic neural networks. Artif Intell Med 31:197–209. doi:10.1016/j.artmed.2004.03.005

    Article  PubMed  Google Scholar 

  20. Assaleh K, Al-Nashash H (2005) A novel technique for the extraction of fetal ECG using polynomial networks. IEEE Trans Biomed Eng 52:1148–1152. doi:10.1109/TBME.2005.844046

    Article  PubMed  Google Scholar 

  21. Assaleh K (2007) Extraction of fetal electrocardiogram using adaptive neuro-fuzzy inference systems. IEEE Trans Biomed Eng 54:59–68. doi:10.1109/TBME.2006.883728

    Article  PubMed  Google Scholar 

  22. De Lathauwer L, De Moor B, Vandewalle J (2000) Fetal electrocardiogram extraction by blind source subspace separation. IEEE Trans Biomed Eng 47:567–572. doi:10.1109/10.841326

    Article  PubMed  Google Scholar 

  23. Zarzoso V, Nandi AK, Bacharakis E (1997) Maternal and foetal ECG separation using blind source separation methods. IMA J Math Appl Med Biol 14:207–225. doi:10.1093/imammb/14.3.207

    Article  CAS  PubMed  Google Scholar 

  24. Zarzoso V, Nandi AK (2001) Noninvasive fetal electrocardiogram extraction: blind separation versus adaptive noise cancellation. IEEE Trans Biomed Eng 48:12–18. doi:10.1109/10.900244

    Article  CAS  PubMed  Google Scholar 

  25. Sameni R, Jutten C, Shamsollahi MB (2008) Multichannel electrocardiogram decomposition using periodic component analysis. IEEE Trans Biomed Eng 55:1935–1940. doi:10.1109/TBME.2008.919714

    Article  PubMed  Google Scholar 

  26. Vullings R, Peters CHL, Sluijter RJ et al (2009) Dynamic segmentation and linear prediction for maternal ECG removal in antenatal abdominal recordings. Physiol Meas 30:291–307. doi:10.1088/0967-3334/30/3/005

    Article  CAS  PubMed  Google Scholar 

  27. Ghaffari A, Mollakazemi MJ, Atyabi SA, Niknazar M (2015) Robust fetal QRS detection from noninvasive abdominal electrocardiogram based on channel selection and simultaneous multichannel processing. Australas Phys Eng Sci Med 38:581–592. doi:10.1007/s13246-015-0381-2

    Article  PubMed  Google Scholar 

  28. Varanini M, Tartarisco G, Billeci L et al (2014) An efficient unsupervised fetal QRS complex detection from abdominal maternal ECG. Physiol Meas 35:1607–1619. doi:10.1088/0967-3334/35/8/1607

    Article  CAS  PubMed  Google Scholar 

  29. Andreotti F, Riedl M, Himmelsbach T et al (2014) Robust fetal ECG extraction and detection from abdominal leads. Physiol Meas 35:1551–1567. doi:10.1088/0967-3334/35/8/1551

    Article  PubMed  Google Scholar 

  30. Behar J, Oster J, Clifford GD (2014) Combining and benchmarking methods of foetal ECG extraction without maternal or scalp electrode data. Physiol Meas 35:1569–1589. doi:10.1088/0967-3334/35/8/1569

    Article  PubMed  Google Scholar 

  31. Sameni R (2008) Extraction of fetal cardiac signals from an array of maternal abdominal recordings. Ph.D. thesis, Sharif University of Technology—Institut National Polytechnique de Grenoble

  32. Goldberger AL, Amaral LA, Glass L et al (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101:E215–E220. doi:10.1161/01.CIR.101.23.e215

    Article  CAS  PubMed  Google Scholar 

  33. Behar J, Andreotti F, Zaunseder S et al (2016) A practical guide to non-invasive foetal electrocardiogram extraction and analysis. Physiol Meas 37:R1–R35. doi:10.1088/0967-3334/37/5/R1

    Article  PubMed  Google Scholar 

  34. Andreotti F, Behar J, Zaunseder S et al (2016) An open-source framework for stress-testing non-invasive foetal ECG extraction algorithms. Physiol Meas 37:627–648. doi:10.1088/0967-3334/37/5/627

    Article  PubMed  Google Scholar 

  35. Nallathambi G, Member S (2014) Integrate and Fire Pulse Train Automaton for QRS detection. IEEE Trans Biomed Eng 61:317–326

    Article  PubMed  Google Scholar 

  36. Rakshit M, Panigrahy D, Sahu PK (2016) An improved method for R-peak detection by using Shannon energy envelope. Sadhana– Acad Proc Eng Sci Springer 41:469–477. doi:10.1007/s12046-016-0485-8

    Google Scholar 

  37. Sivaraman J, Uma G, Venkatesan S et al (2014) A study on atrial ta wave morphology in healthy subjects: An approach using P wave signal-averaging method. J Med Imaging Heal Informatics 4:675–680. doi:10.1166/jmihi.2014.1306

    Article  Google Scholar 

  38. Panigrahy D, Sahu PK (2016) Extended Kalman smoother with differential evolution technique for denoising of ECG signal. Australas Phys Eng Sci Med 39:783–795. doi:10.1007/s13246-016-0468-4

    Article  CAS  PubMed  Google Scholar 

  39. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13:398–417. doi:10.1109/TEVC.2008.927706

    Article  Google Scholar 

  40. McSharry PE, Clifford GD, Tarassenko L, Smith LA (2003) A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans Biomed Eng 50:289–294. doi:10.1109/TBME.2003.808805

    Article  PubMed  Google Scholar 

  41. Storn R (1996) On the usage of differential evolution for function optimization.Proceedings of North American Fuzzy Informaton Processing society, NAFIPS’96 519–523. doi:10.1109/NAFIPS.1996.534789

  42. Price K, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization (natural computing series). J Hered 104:542

    Google Scholar 

  43. Welch G, Bishop G (2006) An Introduction to the Kalman Filter. In Practice. pp 1–16

  44. Sameni R, Shamsollahi MB, Jutten C, Clifford GD (2007) A nonlinear Bayesian filtering framework for ECG denoising. IEEE Trans Biomed Eng 54:2172–2185. doi:10.1109/TBME.2007.897817

    Article  PubMed  Google Scholar 

  45. Kakar M, Nyström H, Aarup LR et al (2005) Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS). Phys Med Biol 50:4721–4728. doi:10.1088/0031-9155/50/19/020

    Article  PubMed  Google Scholar 

  46. Tracey BH, Miller EL (2012) Nonlocal means denoising of ECG signals. IEEE Trans Biomed Eng 59:2383–2386. doi:10.1109/TBME.2012.2208964

    Article  PubMed  Google Scholar 

  47. Panigrahy D, Rakshit M, Sahu PK (2016) FPGA implementation of heart rate monitoring system. J Med Syst 40:1–12. doi:10.1007/s10916-015-0410-4

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Manas Rakshit, Department of Electrical Engineering, N.I.T. Rourkela, Odisha for his constant and help and support throughout the work and to obtain the result. Author would also like to thank editor and reviewers of the manuscript for valuable suggestion to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Panigrahy.

Ethics declarations

Financial disclosure

The authors certify they have no affiliations with or involvement in any organization or entity with any financial or non-financial interest in the subject matter or materials discussed in this manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panigrahy, D., Sahu, P.K. Extraction of fetal ECG signal by an improved method using extended Kalman smoother framework from single channel abdominal ECG signal. Australas Phys Eng Sci Med 40, 191–207 (2017). https://doi.org/10.1007/s13246-017-0527-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-017-0527-5

Keywords

Navigation