Skip to main content
Log in

Biomechanical investigation of titanium elastic nail prebending for treating diaphyseal long bone fractures

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

This study numerically investigated the deformation of titanium elastic nails prebent at various degrees during implantation into the intramedullary canal of fractured bones and the mechanism by which this prebending influenced the stability of the fractured bone. Three degrees of prebending the implanted portions of the nails were used: equal to, two times, and three times the diameter of the intramedullary canal. Furthermore, a simulated diaphyseal fracture with a 5-mm gap was created in the middle shaft portion of the bone fixed with two elastic nails in a double C-type configuration. End caps were simulated using a constraint equation. To confirm that the simulation process is able to present the mechanical response of the nail inside the intramedullary, an experiment was conducted by using sawbone for validation. The results indicated that increasing the degrees of nail prebending facilitated straightening the nails against the inner aspect of canal after implantation, with increase in stability under torsion. Furthermore, reducing nail prebending caused a larger portion of the nails to move closer to the loading site and center of bone after implantation; the use of end caps prevented the nail tips from collapsing and increased axial stability. End cap use was critical for preventing the nail tips from collapsing and for increasing the stability of the nails prebent at a degree equal to the diameter of the canal with insufficient frictional force between the nail and canal. Therefore, titanium elastic nail prebending in a double C-type configuration with a degree three times the diameter of the canal represents a superior solution for treating transverse fractures without a gap, whereas that with a degree equal to the diameter of the intramedullary canal and combined with end cap use represents an advanced solution for treating comminuted fractures in a diaphyseal long bone fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Huber RI, Keller HW, Huber PM, Rehm KE (1996) Flexible intramedullary nailing as fracture treatment in children. J Pediatr Orthop 16(5):602–605

    Article  CAS  PubMed  Google Scholar 

  2. Linhart WE, Roposch A (1999) Elastic stable intramedullary nailing for unstable femoral fractures in children: preliminary results of a new method. J Trauma 47(2):372–378

    Article  CAS  PubMed  Google Scholar 

  3. Eveleigh RJ (1995) A review of biomechanical studies of intramedullary nails. Med Eng Phy 17(5):323–331

    Article  CAS  Google Scholar 

  4. Fernandez FF, Langendorfer M, Wirth T, Eberhardt O (2010) Failures and complications in intramedullary nailing of children’s forearm fractures. J Child Orthop 4(2):159–167. doi:10.1007/s11832-010-0245-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anastasopoulos J, Petratos D, Konstantoulakis C, Plakogiannis C, Matsinos G (2010) Flexible intramedullary nailing in paediatric femoral shaft fractures. Injury 41(6):578–582. doi:10.1016/j.injury.2009.10.020

    Article  PubMed  Google Scholar 

  6. Barry M, Paterson JM (2004) A flexible intramedullary nails for fractures in children. J Bone Jt Surg Br 86(7):947–953

    Article  CAS  Google Scholar 

  7. O’Brien T, Weisman DS, Ronchetti P, Piller CP, Maloney M (2004) Flexible titanium nailing for the treatment of the unstable pediatric tibial fracture. J Pediatr Orthop 24(6):601–609

    Article  PubMed  Google Scholar 

  8. Song HR, Oh CW, Shin HD, Kim SJ, Kyung HS, Baek SH, Park BC, Ihn JC (2004) Treatment of femoral shaft fractures in young children: comparison between conservative treatment and retrograde flexible nailing. J Pediatr Orthop Part B 13(4):275–280

    Article  Google Scholar 

  9. Poolman RW, Kocher MS, Bhandari M (2006) Pediatric femoral fractures: a systematic review of 2422 cases. J Orthop Trauma 20(9):648–654. doi:10.1097/01.bot.0000247073.79430.87

    PubMed  Google Scholar 

  10. Flynn JM, Hresko T, Reynolds RA, Blasier RD, Davidson R, Kasser J (2001) Titanium elastic nails for pediatric femur fractures: a multicenter study of early results with analysis of complications. J Pediatr Orthop 21(1):4–8

    Article  CAS  PubMed  Google Scholar 

  11. Kaiser MM, Stratmann C, Zachert G, Schulze-Hessing M, Gros N, Eggert R, Rapp M (2014) Modification of elastic stable intramedullary nailing with a 3rd nail in a femoral spiral fracture model—results of biomechanical testing and a prospective clinical study. BMC Musculoskelet Disord 15:3. doi:10.1186/1471-2474-15-3

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zeng L, Wei H, Liu Y, Zhang W, Pan Y, Zhang W, Zhang C, Zeng B, Chen Y (2015) Titanium elastic nail (TEN) versus reconstruction plate repair of midshaft clavicular fractures: a finite element study. PLoS One 10(5):e0126131. doi:10.1371/journal.pone.0126131

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gordon JE, Gregush RV, Schoenecker PL, Dobbs MB, Luhmann SJ (2007) Complications after titanium elastic nailing of pediatric tibial fractures. J Pediatr Orthop 27(4):442–446. doi:10.1097/01.bpb.0000271333.66019.5c

    Article  PubMed  Google Scholar 

  14. Kaiser MM, Zachert G, Wendlandt R, Eggert R, Stratmann C, Gros N, Schulze-Hessing M, Rapp M (2012) Increasing stability by pre-bending the nails in elastic stable intramedullary nailing: a biomechanical analysis of a synthetic femoral spiral fracture model. J Bone Jt Surg Br 94(5):713–718. doi:10.1302/0301-620x.94b5.28247

    Article  CAS  Google Scholar 

  15. Luhmann SJ, Schootman M, Schoenecker PL, Dobbs MB, Gordon JE (2003) Complications of titanium elastic nails for pediatric femoral shaft fractures. J Pediatr Orthop 23(4):443–447

    PubMed  Google Scholar 

  16. Moroz LA, Launay F, Kocher MS, Newton PO, Frick SL, Sponseller PD, Flynn JM (2006) Titanium elastic nailing of fractures of the femur in children. Predictors of complications and poor outcome. J Bone Jt Surg Br 88(10):1361–1366. doi:10.1302/0301-620X.88B10.17517

    Article  CAS  Google Scholar 

  17. Narayanan UG, Hyman JE, Wainwright AM, Rang M, Alman BA (2004) Complications of elastic stable intramedullary nail fixation of pediatric femoral fractures, and how to avoid them. J Pediatr Orthop 24(4):363–369

    Article  PubMed  Google Scholar 

  18. Sink EL, Gralla J, Repine M (2005) Complications of pediatric femur fractures treated with titanium elastic nails: a comparison of fracture types. J Pediatr Orthop 25(5):577–580

    Article  PubMed  Google Scholar 

  19. Wall EJ, Jain V, Vora V, Mehlman CT, Crawford AH (2008) Complications of titanium and stainless steel elastic nail fixation of pediatric femoral fractures. J Bone Jt Surg Am 90(6):1305–1313. doi:10.2106/jbjs.g.00328

    Article  Google Scholar 

  20. Sarkar S, Bandyopadhyay R, Mukherjee A (2013) Titanium elastic nail - Complications in the treatment of paediatric diaphyseal fracture of femur [corrected]. Open Orthop J 7:12–17. doi:10.2174/1874325001307010012

    PubMed  PubMed Central  Google Scholar 

  21. Slongo TF (2005) Complications and failures of the ESIN technique. Injury 36(Suppl 1):A78–A85. doi:10.1016/j.injury.2004.12.017

    Article  PubMed  Google Scholar 

  22. Metaizeau JP (2004) Stable elastic intramedullary nailing for fractures of the femur in children. The Journal of bone joint surgery British 86(7):954–957

    Article  CAS  Google Scholar 

  23. Kaiser MM, Zachert G, Wendlandt R, Rapp M, Eggert R, Stratmann C, Wessel LM, Schulz AP, Kienast BJ (2011) Biomechanical analysis of a synthetic femoral spiral fracture model: do end caps improve retrograde flexible intramedullary nail fixation? J Orthop Surg Res 6:46. doi:10.1186/1749-799x-6-46

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fricka KB, Mahar AT, Lee SS, Newton PO (2004) Biomechanical analysis of antegrade and retrograde flexible intramedullary nail fixation of pediatric femoral fractures using a synthetic bone model. J Pediatr Orthop 24(2):167–171

    Article  PubMed  Google Scholar 

  25. Lee SS, Mahar AT, Newton PO (2001) Ender nail fixation of pediatric femur fractures: a biomechanical analysis. J Pediatr Orthop 21(4):442–445

    CAS  PubMed  Google Scholar 

  26. Goyal N, Aggarwal AN, Mishra P, Jain A (2014) Randomized controlled trial comparing stabilization of fresh close femoral shaft fractures in children with titanium elastic nail system versus stainless steel elastic nail system. Acta Orthop Belg 80(1):69–75

    PubMed  Google Scholar 

  27. Gwyn DT, Olney BW, Dart BR, Czuwala PJ (2004) Rotational control of various pediatric femur fractures stabilized with titanium elastic intramedullary nails. J Pediatr Orthop 24(2):172–177

    Article  PubMed  Google Scholar 

  28. Perez A, Mahar A, Negus C, Newton P, Impelluso T (2008) A computational evaluation of the effect of intramedullary nail material properties on the stabilization of simulated femoral shaft fractures. Med Eng Phy 30(6):755–760. doi:10.1016/j.medengphy.2007.08.004

    Article  Google Scholar 

  29. Chang CH, Hsu JT, Chen SI, Chen WP, Chang GL (2002) The effect of material inhomogeneous for femoral finite element analysis. J Med Biol Eng 22(3):121–128

    Google Scholar 

  30. Chen YN, Chang CW, Li CT, Chang CH, Lin CF (2015) Finite element analysis of plantar fascia during walking: a quasi-static simulation. Foot Ankle Int 36 (1):90–97. doi:10.1177/1071100714549189

    Article  PubMed  Google Scholar 

  31. Wieding J, Souffrant R, Fritsche A, Mittelmeier W, Bader R (2012) Finite element analysis of osteosynthesis screw fixation in the bone stock: an appropriate method for automatic screw modelling. PLoS one 7(3):e33776. doi:10.1371/journal.pone.0033776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee YH, Chung CJ, Wang CW, Peng YT, Chang CH, Chen CH, Chen YN, Li CT (2016) Computational comparison of three posterior lumbar interbody fusion techniques by using porous titanium interbody cages with 50% porosity. Comput Biol Med 71:35–45. doi:10.1016/j.compbiomed.2016.01.024

    Article  CAS  PubMed  Google Scholar 

  33. Chang CW, Chen YN, Li CT, Peng YT, Chang CH (2015) Role of the compression screw in the dynamic hip-screw system: a finite-element study. Med Eng Phy 37 (12):1174–1179. doi:10.1016/j.medengphy.2015.10.001

    Article  Google Scholar 

  34. Celik A, Kovaci H, Saka G, Kaymaz I (2015) Numerical investigation of mechanical effects caused by various fixation positions on a new radius intramedullary nail. Comput Methods Biomech Biomed Engin 18(3):316–324. doi:10.1080/10255842.2013.792919

    Article  CAS  PubMed  Google Scholar 

  35. Ligier JN, Metaizeau JP, Prevot J, Lascombes P (1985) Elastic stable intramedullary pinning of long bone shaft fractures in children. Zeitschrift fur Kinderchirurgie 40(4):209–212. doi:10.1055/s-2008-1059775

    CAS  PubMed  Google Scholar 

  36. Shirazi-Adl A, Dammak M, Paiement G (1993) Experimental determination of friction characteristics at the trabecular bone/porous-coated metal interface in cementless implants. J Biomed Mat Res 27(2):167–175. doi:10.1002/jbm.820270205

    Article  CAS  Google Scholar 

  37. Boresi AP, Schmidt RJ (1993) Advanced mechanics of materials. John Wiley & Sons, Inc, New York

    Google Scholar 

  38. Ziaja W (2009) Finite element modelling of the fracture behaviour of surface treated Ti-6Al-4V alloy. Arch Comput Mat Sci Surf Eng 1(1):53–60

    CAS  Google Scholar 

  39. Cheal EJ, Spector M, Hayes WC (1992) Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty. J Orthop Res 10(3):405–422. doi:10.1002/jor.1100100314

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Ting Li.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Ethical approval

All ethical codes have been considered.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YN., Lee, PY., Chang, CW. et al. Biomechanical investigation of titanium elastic nail prebending for treating diaphyseal long bone fractures. Australas Phys Eng Sci Med 40, 115–126 (2017). https://doi.org/10.1007/s13246-016-0509-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-016-0509-z

Keywords

Navigation