Skip to main content
Log in

Evaluation of the influences of various force magnitudes and configurations on scoliotic curve correction using finite element analysis

  • Technical Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Scoliosis is a lateral curvature in the normally straight vertical line of the spine, and the curvature can be moderate to severe. Different treatment can be used based on severity and age of subjects, but most common treatment for this disease is using orthosis. To design orthosis types of force arrangement can be varied, from transverse loads to vertical loads or combination of them. But it is not well introduced how orthoses control scoliotic curve and how to achieve the maximum correction based on force configurations and magnitude. Therefore, it was aimed to determine the effect of various loads configurations and magnitudes on curve correction of a degenerative scoliotic subject. A scoliotic subject participated in this study. The CT-Scan of the subject was used to produce 3D model of spine. The 3D model of spine was produced by Mimics software and the finite element analysis and deformation of scoliotic curve of the spine under seven different forces and in three different conditions was determined by ABAQUS software. The Cobb angle in scoliosis curve decreased significantly by applying forces. In each condition depends on different forces, different corrections have been achieved. It can be concluded that the configurations of the force application mentioned in this study is effective to decrease the scoliosis curve. Although it is a case study, it can be used for a vast number of subjects to predict the correction of scoliosis curve before orthotic treatment. Moreover, it is recommended that this method and the outputs can be compared with clinical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ma X, Zhao B, Lin QK (1995) Investigation on scoliosis incidence among 24,130 school children. Zhonghua Liu Xing Bing Xue Za Zhi 16(2):109–110

    CAS  PubMed  Google Scholar 

  2. Rogala EJ, Drummond DS, Gurr J (1978) Scoliosis: incidence and natural history. A prospective epidemiological study. J Bone Joint Surg Am 60(2):173–176

    Article  CAS  PubMed  Google Scholar 

  3. Ropac D et al (2013) Spinal deformities among pupils: a growing issue. Coll Antropol 37(Suppl 2):139–145

    PubMed  Google Scholar 

  4. Weinstein SL (1989) Idiopathic scoliosis in adolescence. Incidence and progression of untreated scoliosis. Orthopade 18(2):74–86

    CAS  PubMed  Google Scholar 

  5. Balmer GA, MacEwen GD (1970) The incidence and treatment of scoliosis in cerebral palsy. J Bone Joint Surg Br 52(1):134–137

    CAS  PubMed  Google Scholar 

  6. Burwell RG et al (1992) Pathogenesis of idiopathic scoliosis. The Nottingham concept. Acta Orthop Belg 58(Suppl 1):33–58

    PubMed  Google Scholar 

  7. Zheng J et al (2015) Construction and validation of a three-dimensional finite element model of degenerative scoliosis. J Orthop Surg Res 10:189

    Article  PubMed  PubMed Central  Google Scholar 

  8. Aulisa AG et al (2012) Brace technology thematic series: the progressive action short brace (PASB). Scoliosis 7:6

    Article  PubMed  PubMed Central  Google Scholar 

  9. Blount WP et al (1958) The Milwaukee brace in the operative treatment of scoliosis. J Bone Joint Surg Am 40-A(3):511–525

    Article  CAS  PubMed  Google Scholar 

  10. de Mauroy JC, Lecante C, Barral F (2011) “Brace technology” thematic series: the Lyon approach to the conservative treatment of scoliosis. Scoliosis 6:4

    Article  PubMed  PubMed Central  Google Scholar 

  11. Grivas TB, Rodopoulos GI, Bardakos NV (2008) Night-time braces for treatment of adolescent idiopathic scoliosis. Disabil Rehabil Assist Technol 3(3):120–129

    Article  PubMed  Google Scholar 

  12. Noonan KJ et al (1996) Use of the Milwaukee brace for progressive idiopathic scoliosis. J Bone Joint Surg Am 78(4):557–567

    Article  CAS  PubMed  Google Scholar 

  13. Weiss HR, Werkmann M (2012) Soft braces in the treatment of adolescent idiopathic scoliosis (AIS): review of the literature and description of a new approach. Scoliosis 7(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zaborowska-Sapeta K et al (2011) Effectiveness of Cheneau brace treatment for idiopathic scoliosis: prospective study in 79 patients followed to skeletal maturity. Scoliosis 6(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  15. Goldberg B, Hsu JD (1997) Atlas of orthoses and assistive devices. Mosby incorporated

  16. Weiss HR, Werkmann M, Stephan C (2007) Correction effects of the ScoliOlogiC “Cheneau light” brace in patients with scoliosis. Scoliosis 2:2

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zheng X et al (2012) Evolution of the curve patterns during brace treatment for adolescent idiopathic scoliosis. Eur Spine J 21(6):1157–1164

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hsu JD et al. (2008) AAOS atlas of orthoses and assistive devices. Mosby/Elsevier: Philadelphia

    Google Scholar 

  19. Goldberg B, Hsu JD, American Academy of Orthopaedic Surgeons (1997) Atlas of orthoses and assistive devices, 3rd edn. Mosby, xvi: St. Louis, p 704

    Google Scholar 

  20. Wong MS et al (2008) The effect of rigid versus flexible spinal orthosis on the gait pattern of patients with adolescent idiopathic scoliosis. Gait Posture 27(2):189–195

    Article  CAS  PubMed  Google Scholar 

  21. Grivas TB et al (2010) Brace technology thematic series: the dynamic derotation brace. Scoliosis 5:20

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chow DH, Leung DS, Holmes AD (2007) The effects of load carriage and bracing on the balance of schoolgirls with adolescent idiopathic scoliosis. Eur Spine J 16(9):1351–1358

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang W et al (2014) The use of finite element models to assist understanding and treatment for scoliosis: A review paper. Spine Deformity 2(1):10–27

    Article  PubMed  Google Scholar 

  24. Gignac D et al (2000) Optimization method for 3D bracing correction of scoliosis using a finite element model. Eur Spine J 9(3):185–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Périe D, Gauzy JS, Hobatho MC (2002) Biomechanical evaluation of Cheneau-Toulouse-Munster brace in the treatment of scoliosis using optimisation approach and finite element method. Med Biol Eng Comput 40(3):296–301

    Article  PubMed  Google Scholar 

  26. Clin J et al (2010) Comparison of the biomechanical 3D efficiency of different brace designs for the treatment of scoliosis using a finite element model. Eur Spine J 19(7):1169–1178

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liao YC et al (2007) Shape modification of the Boston brace using a finite-element method with topology optimization. Spine (Phila Pa 1976) 32(26):3014–3019

    Article  Google Scholar 

  28. Little JP, Adam C (2012) Towards determining soft tissue properties for modelling spine surgery: current progress and challenges. Med Biol Eng Comput 50(2):199–209

    Article  PubMed  Google Scholar 

  29. Little JP, Adam CJ (2009) The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending. Spine (Phila Pa 1976) 34(2):E76–E82

    Article  Google Scholar 

  30. Wang L, Zhang B, Chen S, Lu X, Li ZY, Guo Q (2016) A validated finite element analysis of facet joint stress in degenerative lumbar scoliosis. World Neurosurg 95:126–133

    Article  PubMed  Google Scholar 

  31. Wong MS, Evans JH (1998) Biomechanical evaluation of the Milwaukee brace. Prosthet Orthot Int 22(1):54–67

    CAS  PubMed  Google Scholar 

  32. Mulcahy T et al (1973) A follow-up study of forces acting on the Milwaukee brace on patients undergoing treatment for idiopathic scoliosis. Clin Orthop Relat Res 93:53–68

    Article  Google Scholar 

  33. Asher MA, Burton DC (2006) Adolescent idiopathic scoliosis: natural history and long term treatment effects. Scoliosis 1:2

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, M.T., Ebrahimi, M.H., Mohammadi, A. et al. Evaluation of the influences of various force magnitudes and configurations on scoliotic curve correction using finite element analysis. Australas Phys Eng Sci Med 40, 231–236 (2017). https://doi.org/10.1007/s13246-016-0501-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-016-0501-7

Keywords

Navigation